【干货】基因敲除细胞系技术介绍
细胞系是由具有无限分裂能力的转化细胞群组成。这通常来源于实验室患者或动物的细胞系的致瘤起因。细胞系在研究中可能是无价的,整个医学领域都异常的重视。它们通常坚固并且需要相对简单的条件,从而进行组织培养。通过这种方式,这些类型的细胞最适合用于概念验证工作的基因敲除细胞系技术(例如生物打印设备和技术的开发和初始实施)。但是,尽管细胞系确实保留了其来源细胞类型的某些正常功能,但通常会大大降低其功能。
含有谷氨酰胺合成酶(GS)基因敲除的细胞系和使用该基因敲除的HEK293细胞系生产靶蛋白的方法
本发明涉及从转基因HEK293(人胚肾293)细胞系中敲除的新型GS(谷氨酰胺合成酶)基因和使用该转基因HEK293细胞系制备靶蛋白的方法。特别地,本发明人消除了HEK293细胞中GS的表达,以克服由GS的过表达引起的细胞系选择障碍,从而通过GS / MSX系统产生靶蛋白,从而提高了效率。因此,高产量靶蛋白的细胞系选择将增加,因此所选细胞系的蛋白产量显上升,这表明稳转细胞系的基因编辑技术可以有效地用于生产靶蛋白。
转基因细胞系网状细胞可以剖析宿主疟疾入侵的需求
这种无核细胞的遗传难治性阻碍了对宿主红细胞蛋白在疟疾感染中的作用进行了研究。而在研究人员的报告中,从体外分离出的永生红细胞系(BEL-A)分化出的网状细胞支持恶性疟原虫的成功入侵和细胞内发育。利用CRISPR介导的基因敲除和随后的互补作用,研究人员验证了红细胞受体西那平在恶性疟原虫侵袭中起到的重要作用,并通过受体的重新表达证明了对侵袭性细胞系基因编辑进行挽救。网织红细胞的成功侵袭补充了截短的突变体,消除了侵袭过程中basigin胞质域的功能作用。相反,据报道,参与侵袭并与basigin相互作用的亲环蛋白B的敲除不影响网织细胞的侵袭敏感性。这些数据建立了永生红细胞来源的网织红细胞作为强大的模型系统的用途,以探索有关恶性疟原虫入侵的宿主受体需求的假设。研究人员表明,来自永生红细胞的网状细胞支持恶性疟原虫的侵袭和发展,并使用CRISPR介导的基因敲除和侵袭受体的互补来证明该模型系统在疟疾侵袭研究中的实用性。
EndoC-βH1细胞系中的CRISPR/Cas9基因组编辑管道,用于研究与细胞功能有关的基因
2型糖尿病(T2D)是全球性的大流行病,具有很强的遗传成分,但是影响疾病风险的大多数致病基因都为未知的。现在,很清楚,胰岛β细胞是T2D发病机制的中心。迄今为止,用于研究T2D风险基因的体外基因敲除(KO)模型一直集中在啮齿动物β细胞上。但是,啮齿动物和人的细胞系之间存在重要的结构和功能差异。考虑到这一点,研究人员已经开发出了强大的管道,可以在真实的人类细胞系中(EndoC-βH1)中创建稳定的CRISPR/Cas9 KO。 KO流程包括双重慢病毒sgRNA策略,研究人员针对三个基因(INS,IDE,PAM)进行了概念验证。研究人员实现了所有靶基因mRNA水平的显着降低和蛋白质的完全消耗。使用这种双重sgRNA策略,可以从目标基因中切割出多达94 kb的DNA,每个sgRNA的编辑效率都超过了87.5%。脱靶序列没有特别的敲除和编辑。最重要的是,管道有不影响细胞的葡萄糖反应性胰岛素分泌。有趣的是,使用siRNA介导的敲除(KD)方法比较NEUROD1和SLC30A8的KO细胞系表现出表型差异。 NEUROD1-KO细胞不活跃,并显示出较高的内质网应激和凋亡标记。然而,NEUROD1-KD的促凋亡转录因子CHOP和基因表达谱仅适度升高,增幅为34%,表明慢性ER应激,而没有细胞死亡的证据。另一方面,与siRNA沉默相反,SLC30A8-KO细胞显示出K ATP通道基因表达没有降低。总体而言,这种在人的细胞系EndoC-βH1中有效创建稳定KO的策略将使人们更好地了解与编辑细胞功能异常有关的基因,与其潜在的功能机制和T2D发病原理。
Reference
Gyun Min Lee, Da Young Yu, Soo Min Noh.Cell line containing a knockout of the glutamine synthetase (GS) gene and a method of producing target proteins using a GS knockout HEK293 cell line.2016.US Patent
Satchwell T J, Wright K E, Haydnsmith K L, et al. Genetic manipulation of cell line derived reticulocytes enables dissection of host malaria invasion requirements[J]. Nature Communications, 2019, 10(1): 3806-3806.
Grotz AK, Abaitua F, Navarro-Guerrero E, Hastoy B, Ebner D, Gloyn AL. A CRISPR/Cas9 genome editing pipeline in the EndoC-βH1 cell line to study genes implicated in beta cell function. Wellcome Open Res. 2020;4:150. Published 2020 Apr 29.
doi:10.12688/wellcomeopenres.15447.2.