python 主力资金

import numpy as np

def initialize(context):

g.up_price = {} #向上碎形最高价

g.low_price = {} #向下碎形最低价

g.up_fractal_exists = {} #判断有效向上碎形

g.down_fractal_exists = {} #判断有效向下碎形

g.AO_index = {} #存放连续的AO指标数据

g.cal_AC_index = {} #计算AC指标中转存储

g.AC_index = {} #存放连续的AC指标数据

g.amount = {} #满仓仓位

g.stock = get_index_stocks('000300.XSHG')

g.buy_stock = []

set_benchmark('000300.XSHG')

g.month = context.current_dt.month

run_monthly(select_universe,1,'open')

#重置全局变量

def reset_global():

g.up_price = {} #向上碎形最高价

g.low_price = {} #向下碎形最低价

g.up_fractal_exists = {} #判断有效向上碎形

g.down_fractal_exists = {} #判断有效向下碎形

g.AO_index = {} #存放连续的AO指标数据

g.cal_AC_index = {} #计算AC指标中转存储

g.AC_index = {} #存放连续的AC指标数据

g.amount = {} #满仓仓位

g.buy_stock = []

def initial_stock_global(stock):

g.up_price[stock] = 0

g.low_price[stock] = 0

g.up_fractal_exists[stock] = False

g.down_fractal_exists[stock] = False #判断有效向下碎形

g.AO_index[stock] = [0] #存放连续的AO指标数据

g.cal_AC_index[stock] = [0] #计算AC指标中转存储

g.AC_index[stock] = [0] #存放连续的AC指标数据

g.amount[stock] = 0 #满仓仓位

#轮换选股后清空持仓

def reset_position(context):

for stock in g.buy_stock:

order_target(stock,0)

log.info('sell %s for reset position'%stock)

#选股

def select_universe(context):

#每三个月操作一次

month = context.current_dt.month

if month%6 != g.month%6:

return

#清空全局变量

reset_position(context)

reset_global()

hist = history(30,'1d','close',g.stock,df = False)

for stock in g.stock:

if is_sleeping_alligator(stock,hist,20):

g.buy_stock.append(stock)

#初始化该股票全局变量

initial_stock_global(stock)

print g.buy_stock

return None

#睡着的鳄鱼

def is_sleeping_alligator(stock,hist,nday):

for i in range(nday):

if is_struggle(stock,hist,i) == False:

return False

return True

#均线纠缠,BRG三线非常接近

def is_struggle(stock,hist,delta):

blue_line = hist[stock][-21-delta:-8-delta].mean()

red_line = hist[stock][-13-delta:-5-delta].mean()

green_line = hist[stock][-8-delta:-3-delta].mean()

if abs(blue_line/red_line-1)<0.02 and abs(red_line/green_line-1)<0.02:

return True

else:

return False

#判断 向上 或 向下 碎形

def is_fractal(stock,direction):

hist = history(5,'1d',direction,[stock],df = False)

if direction == 'high'\

and hist[stock][2] > hist[stock][0]\

and hist[stock][2] > hist[stock][1]\

and hist[stock][2] > hist[stock][3]\

and hist[stock][2] > hist[stock][4]:

g.up_price[stock] = hist[stock][2]

return True

elif direction == 'low'\

and hist[stock][2] < hist[stock][0]\

and hist[stock][2] < hist[stock][1]\

and hist[stock][2] < hist[stock][3]\

and hist[stock][2] < hist[stock][4]:

g.low_price[stock] = hist[stock][2]

return True

return False

#通过比较碎形与红线位置,判断碎形是否有效

def is_effective_fractal(stock, direction):

if is_fractal(stock,direction):

hist = history(13,'1d','close',[stock],df = False)

red_line = hist[stock][:-5].mean()

close_price = hist[stock][-1]

if direction == 'high':

if close_price > red_line:

g.up_fractal_exists[stock] = True

else:

g.up_fractal_exists[stock] = False

elif direction == 'low':

if close_price < red_line:

g.down_fractal_exists[stock] = True

else:

g.down_fractal_exists[stock] = False

#N日内最高价格的N日线

def nday_high_point(stock,n):

hist = history(2*n,'1d','high',[stock],df = False)[stock]

high_point = []

for i in range(n):

high_point.append(max(hist[-5-i:-1-i]))

return np.array(high_point).mean()

#N日内最低价格的N日线

def nday_low_point(stock,n):

hist = history(2*n,'1d','low',[stock],df = False)[stock]

low_point = []

for i in range(n):

low_point.append(max(hist[-5-i:-1-i]))

return np.array(low_point).mean()

#AO=5日内(最高-最低)/2的5日移动平均-34日内(最高-最低)/2的34日移动平均

def AO_index(stock):

g.AO_index[stock].append(nday_high_point(stock,5)/2 + nday_low_point(stock,5)/2\

- nday_high_point(stock,34)/2 - nday_low_point(stock,34)/2)

return None

#AO-AO的5日平均值的5日平均

def AC_index(stock):

AO_index(stock)

if len(g.AO_index[stock]) >= 5:

g.cal_AC_index[stock].append(g.AO_index[stock][-1] - np.array(g.AO_index[stock][-5:]).mean())

if len(g.cal_AC_index[stock]) >=5:

g.AC_index[stock].append(np.array(g.cal_AC_index[stock][-5:]).mean())

#判断序列n日上行

def is_up_going(alist,n):

if len(alist) < n:

return False

for i in range(n-1):

if alist[-(1+i)] <= alist[-(2+i)]:

return False

return True

#判断序列n日下行

def is_down_going(alist,n):

if len(alist) < n:

return False

for i in range(n-1):

if alist[-(1+i)] >= alist[-(2+i)]:

return False

return True

#碎形被突破

def active_fractal(stock,direction):

close_price = history(1,'1d','close',[stock],df=False)[stock][0]

if direction == 'up' and close_price > g.up_price[stock]:

return True

elif direction == 'down' and close_price < g.low_price[stock]:

return True

return False

#进场,初始仓位

def set_initial_position(stock,context):

close_price = history(1,'1d','close',[stock],df=False)[stock][0]

g.amount[stock] = context.portfolio.cash/close_price/len(g.buy_stock)*3

order(stock, g.amount[stock])

log.info('buying %s 股数为 %s'%(stock,g.amount[stock]))

g.down_fractal_exists[stock] = False

#卖出

def sell_all_stock(stock,context):

order_target(stock,0)

log.info('selling %s'%stock)

g.up_fractal_exists[stock] = False

#加仓

def adjust_position(stock,context,position):

order(stock,g.amount[stock]*position)

log.info('adjust position buying %s 股数为 %s'%(stock,g.amount[stock]*position))

# 计算股票前n日收益率

def security_return(days,security_code):

hist1 = attribute_history(security_code, days + 1, '1d', 'close',df=False)

security_returns = (hist1['close'][-1]-hist1['close'][0])/hist1['close'][0]

return security_returns

# 止损,根据前n日收益率

def conduct_nday_stoploss(context,security_code,days,bench):

if security_return(days,security_code)<= bench:

for stock in g.buy_stock:

order_target_value(stock,0)

log.info('Sell %s for stoploss' %stock)

return True

else:

return False

# 计算股票累计收益率(从建仓至今)

def security_accumulate_return(context,data,stock):

current_price = data[stock].price

cost = context.portfolio.positions[stock].avg_cost

if cost != 0:

return (current_price-cost)/cost

else:

return None

# 个股止损,根据累计收益

def conduct_accumulate_stoploss(context,data,stock,bench):

if security_accumulate_return(context,data,stock) != None\

and security_accumulate_return(context,data,stock) < bench:

order_target_value(stock,0)

log.info('Sell %s for stoploss' %stock)

return True

else:

return False

# 个股止盈,根据累计收益

def conduct_accumulate_stopwin(context,data,stock,bench):

if security_accumulate_return(context,data,stock) != None\

and security_accumulate_return(context,data,stock) > bench:

order_target_value(stock,0)

log.info('Sell %s for stopwin' %stock)

return True

else:

return False

def handle_data(context,data):

#大盘止损

if conduct_nday_stoploss(context,'000300.XSHG',3,-0.03):

return

for stock in g.buy_stock:

#个股止损

if conduct_accumulate_stopwin(context,data,stock,0.3)\

or conduct_accumulate_stoploss(context,data,stock,-0.1):

return

#计算AO,AC指标

AC_index(stock)

#空仓时,寻找机会入场

if context.portfolio.positions[stock].amount == 0:

#计算向上碎形

is_effective_fractal(stock,'high')

#有效向上碎形存在,并被突破,买入

if g.up_fractal_exists and active_fractal(stock,'up'):

close_price = history(5, '1d', 'close', [stock],df = False)

if is_up_going(g.AO_index[stock],5)\

and is_up_going(g.AC_index[stock],3)\

and is_up_going(close_price[stock],2):

set_initial_position(stock,context)

#有持仓时,加仓或离场

else:

#计算向下碎形

is_effective_fractal(stock,'low')

#出场条件1:有效向下碎形存在,并被突破,卖出

if g.down_fractal_exists and active_fractal(stock,'down'):

sell_all_stock(stock,context)

return

#出场条件2:

#加仓10%:AO,AC同时5日上行,且收盘价走高

# if is_up_going(g.AO_index[stock],5)\

# and is_up_going(g.AC_index[stock],3)\

# and is_up_going(close_price[stock],2):

# adjust_position(stock,context,0.1)

# #减仓10%:AO,AC同时3日下行,且收盘价走低

# if is_down_going(g.AO_index[stock],5)\

# and is_down_going(g.AC_index[stock],3)\

# and is_down_going(close_price[stock],2):

# adjust_position(stock,context,-0.1)

简要介绍

1.选股

选择沪深300指数成分股

沉睡的鳄鱼,RBG三线纠缠。(选择连续20交易日处于沉睡状态的股票,建立buy_stock池)

每6个月更新股票池

benchmark沪深300指数

2.入场

存在有效碎形

有效碎形被突破

AO指标连续5日上行

AC指标连续3日上行

收盘价高于前一日收盘价

按g.amount=总资金/股票池股数×乘数因子3买入。

3.止损&止盈

大盘3日累计收益率下跌3%,全部股票清仓

个股累计收益率(以成本价为基准)超过30%,全部卖出

个股累计收益率下跌10%,全部卖出

4.加仓&减仓(感觉用处不大,暂没有使用,源代码保留在注释里)

AO连续5日上行,AC连续3日上行加仓10%

AO连续5日下跌,AC连续3日下跌减仓10%

5.退出

存在有效向下碎形

向下碎形被突破

全部卖出

小结一下

关于组合仓位控制

股票池组合操作对于仓位控制的要求比较严格。目前这方面还没有太多系统的想法,包括建仓比例,调仓以及不同股票的仓位配置,资金利用效率等等。

举例:g.amount在赋值时,简单的认为根据(总资金/buy_stock股数)×乘数因子 对资金配比。乘数因子是避免不符合条件的股票太多导致仓位较低,影响资金利用效率。

个人感觉,可以根据市值、pe或则其他体现每只持仓股票差异的因素来进行仓位管理,这方面有好的建议的朋友可以留言一起探讨。

止损条件

止损和止盈条件纯属个人风格吧。也是每一个策略里必然会加上的。15年至今的回测结果来看,回撤控制的比较好。当然也就牺牲了一些较大获利的可能性。

(0)

相关推荐