星形线
星形线
由一组直线包络构成
更多
详细介绍
星形线(astroid)或称为四尖瓣线(tetracuspid),是一个有四个尖点的内摆线,也属于超椭圆的一种。所有星形线皆可以依以下的方程式比例缩放而得:
其英文名称得名自希腊文的星星,星形线几乎和椭圆的渐屈线相同。
若让一个半径为1/4的圆在一个半径为1的圆内部,延著圆的圆周旋转,小圆圆周上的任一点形成的轨迹即为星形线。星形线的参数方程为:
星形线是一个几何亏格为0代数曲线的实数轨迹,其方程式如下:
因此星形线为六次曲线,在实数平面上有四个尖瓣的奇点,分别是星形线的四个顶点,在无限远处还有二个复数的尖瓣的奇点,四个重根的复数奇点,因此星形线共有十个奇点。
星形线的对偶曲线是十字架形曲线,其方程式为
。星形线的渐屈线为另一个二倍大的渐屈线。
一个半径为 a之圆的内摆线构成的星形线,其面积为3/8 πa³,周长为6a。
星形线的性质
图片来自维基百科词条:星形线 最先对星形线进行研究是Johann Bernouli。星形线由于有四个尖端,所以有时也被称为四尖内摆线(tetracuspid)。星形线于1836年被正式定名,首次出现在正式出版的图书(出版于维也纳)中。星形线还有许多有趣的名称:cubocycloid和paracycle。
若星形线上某一点切线为T,则其斜率为tan(p),其中p为极坐标中的参数。相应的切线方程为
T: x*sin(p)+y*cos(p)=a*sin(2p)/2 。
如果切线T分别交x、y轴于点x(X,0)、y(0,Y),则线段xy恒为常数,且为a。
星形线是由半径为a/4的圆在半径为a的内侧转动形成的。
在第一象限星形线也可表示为靠在Y轴上一个线段在重力作用下扫过的图形的包络曲线。
赞 (0)