飞得像果蝇的机器人

Insect flight can be fast and agile, making it hard to study its detailed aerodynamics.

昆虫的飞行快速而灵活,因此很难研究其详细的空气动力学。

Karásek et al. designed an untethered, flapping-wing robot with impressive agility that can mimic fruitfly maneuvers.

卡拉西克等设计了一款无线的可以挥动翅膀的机器人,其令人惊讶的灵活度可以模仿果蝇的飞行模式。

They studied the robot's motion during rapid banked turns, which revealed that passive motion through the turn generated yaw torque coupling.

他们研究了机器人在快速倾斜转弯时的运动,结果表明被动转弯产生了偏航力矩耦合。

This correcting yaw rotation propelled the robot toward the escape heading needed for effective turning.

这种校正偏航旋转将机器人推向有效转弯所需的逃逸方向。

Insects are among the most agile natural flyers.

昆虫们算是自然界最灵活的飞行家了。

Hypotheses on their flight control cannot always be validated by experiments with animals or tethered robots.

关于飞行控制的假设不能总是通过动物实验或者有线机器人的实验来验证。

To this end, we developed a programmable and agile autonomous free-flying robot controlled through bio-inspired motion changes of its flapping wings.

如今,我们开发了一种可编程的、灵活的自主飞行机器人,通过其扑翼的仿生运动变化来控制它。

Despite being 55 times the size of a fruit fly, the robot can accurately mimic the rapid escape maneuvers of flies, including a correcting yaw rotation toward the escape heading.

尽管体积是真正果蝇的55倍,这款机器人可以准确地模拟果蝇的快速逃生飞行模式,包括朝正确逃逸方向的校正偏航旋转。

Because the robot’s yaw control was turned off, we showed that these yaw rotations result from passive, translation-induced aerodynamic coupling between the yaw torque and the roll and pitch torques produced throughout the maneuver.

因为机器人的偏航控制被关闭了,我们展示了这些偏转是来自被动的,在整个机动过程中,由平移引起的偏航力矩和横摇力矩之间的气动耦合。

The robot enables new methods for studying animal flight, and its flight characteristics allow for real-world flight missions.

这个机器人提供了研究动物飞行的新方法,它的飞行特性可以用于现实世界的飞行任务。

Science  14 Sep 2018:
Vol. 361, Issue 6407, pp. 1089-1094
DOI: 10.1126/science.aat0350

关于这款飞行机器人朋友们有什么看法呢?欢迎给amber留言哦!

感谢关注

跟amber一起看世界

(0)

相关推荐