如何合理地估算线程池大小?

这个问题虽然看起来很小,却并不那么容易回答。

大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:

假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。

那么问题转化为:如何设计线程池大小,使得可以在1s内处理完20个Transaction?

计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。

再来第二种简单的但不知是否可行的方法(N为CPU总核数):

  1. 如果是CPU密集型应用,则线程池大小设置为N+1

  2. 如果是IO密集型应用,则线程池大小设置为2N+1

如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

接下来在这个文档:服务器性能IO优化 中发现一个估算公式:

最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

可以得出一个结论:线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

上一种估算方法也和这个结论相合。

一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

  • 尽量提高短板操作的并行化比率,比如多线程下载技术

  • 增强短板能力,比如用NIO替代IO

第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:

加速比=优化前系统耗时 / 优化后系统耗时

加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:

Speedup <= 1 / (F + (1-F)/N)

当N足够大时,串行化比率F越小,加速比Speedup越大。

写到这里,我突然冒出一个问题。

是否使用线程池就一定比使用单线程高效呢?

答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

  • 多线程带来线程上下文切换开销,单线程就没有这种开销

当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:

package threadpool;import java.math.BigDecimal;import java.math.RoundingMode;import java.util.Timer;import java.util.TimerTask;import java.util.concurrent.BlockingQueue;/** * A class that calculates the optimal thread pool boundaries. It takes the * desired target utilization and the desired work queue memory consumption as * input and retuns thread count and work queue capacity. * * @author Niklas Schlimm */public abstract class PoolSizeCalculator {    /**     * The sample queue size to calculate the size of a single {@link Runnable}     * element.     */    private final int SAMPLE_QUEUE_SIZE = 1000;    /**     * Accuracy of test run. It must finish within 20ms of the testTime     * otherwise we retry the test. This could be configurable.     */    private final int EPSYLON = 20;    /**     * Control variable for the CPU time investigation.     */    private volatile boolean expired;    /**     * Time (millis) of the test run in the CPU time calculation.     */    private final long testtime = 3000;    /**     * Calculates the boundaries of a thread pool for a given {@link Runnable}.     *     * @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization <=      *            1)      * @param targetQueueSizeBytes      *            the desired maximum work queue size of the thread pool (bytes)     */    protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) {        calculateOptimalCapacity(targetQueueSizeBytes);        Runnable task = creatTask();        start(task);        start(task); // warm up phase        long cputime = getCurrentThreadCPUTime();        start(task); // test intervall        cputime = getCurrentThreadCPUTime() - cputime;        long waittime = (testtime * 1000000) - cputime;        calculateOptimalThreadCount(cputime, waittime, targetUtilization);    }    private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {        long mem = calculateMemoryUsage();        BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem),                RoundingMode.HALF_UP);        System.out.println("Target queue memory usage (bytes): "                + targetQueueSizeBytes);        System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue");        System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);        System.out.println("* Recommended queue capacity (bytes): " + queueCapacity);    }    /**     * Brian Goetz' optimal thread count formula, see 'Java Concurrency in     * * Practice' (chapter 8.2)      *     * * @param cpu     * *            cpu time consumed by considered task     * * @param wait     * *            wait time of considered task     * * @param targetUtilization     * *            target utilization of the system     */    private void calculateOptimalThreadCount(long cpu, long wait,                                             BigDecimal targetUtilization) {        BigDecimal waitTime = new BigDecimal(wait);        BigDecimal computeTime = new BigDecimal(cpu);        BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()                .availableProcessors());        BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)                .multiply(new BigDecimal(1).add(waitTime.divide(computeTime,                        RoundingMode.HALF_UP)));        System.out.println("Number of CPU: " + numberOfCPU);        System.out.println("Target utilization: " + targetUtilization);        System.out.println("Elapsed time (nanos): " + (testtime * 1000000));        System.out.println("Compute time (nanos): " + cpu);        System.out.println("Wait time (nanos): " + wait);        System.out.println("Formula: " + numberOfCPU + " * "                + targetUtilization + " * (1 + " + waitTime + " / "                + computeTime + ")");        System.out.println("* Optimal thread count: " + optimalthreadcount);    }    /**     * * Runs the {@link Runnable} over a period defined in {@link #testtime}.     * * Based on Heinz Kabbutz' ideas     * * (http://www.javaspecialists.eu/archive/Issue124.html).     * *     * * @param task     * *            the runnable under investigation     */    public void start(Runnable task) {        long start = 0;        int runs = 0;        do {            if (++runs > 5) {                throw new IllegalStateException("Test not accurate");            }            expired = false;            start = System.currentTimeMillis();            Timer timer = new Timer();            timer.schedule(new TimerTask() {                public void run() {                    expired = true;                }            }, testtime);            while (!expired) {                task.run();            }            start = System.currentTimeMillis() - start;            timer.cancel();        } while (Math.abs(start - testtime) > EPSYLON);        collectGarbage(3);    }    private void collectGarbage(int times) {        for (int i = 0; i < times; i++) {            System.gc();            try {                Thread.sleep(10);            } catch (InterruptedException e) {                Thread.currentThread().interrupt();                break;            }        }    }    /**     * Calculates the memory usage of a single element in a work queue. Based on     * Heinz Kabbutz' ideas     * (http://www.javaspecialists.eu/archive/Issue029.html).     *     * @return memory usage of a single {@link Runnable} element in the thread     * pools work queue     */    public long calculateMemoryUsage() {        BlockingQueue queue = createWorkQueue();        for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {            queue.add(creatTask());        }        long mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();        long mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();        queue = null;        collectGarbage(15);        mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();        queue = createWorkQueue();        for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {            queue.add(creatTask());        }        collectGarbage(15);        mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();        return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;    }    /**     * Create your runnable task here.     *     * @return an instance of your runnable task under investigation     */    protected abstract Runnable creatTask();    /**     * Return an instance of the queue used in the thread pool.     *     * @return queue instance     */    protected abstract BlockingQueue createWorkQueue();    /**     * Calculate current cpu time. Various frameworks may be used here,     * depending on the operating system in use. (e.g.     * http://www.hyperic.com/products/sigar). The more accurate the CPU time     * measurement, the more accurate the results for thread count boundaries.     *     * @return current cpu time of current thread     */    protected abstract long getCurrentThreadCPUTime();}

然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:

package threadpool;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;import java.lang.management.ManagementFactory;import java.math.BigDecimal;import java.net.HttpURLConnection;import java.net.URL;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {    @Override    protected Runnable creatTask() {        return new AsyncIOTask();    }    @Override    protected BlockingQueue createWorkQueue() {        return new LinkedBlockingQueue(1000);    }    @Override    protected long getCurrentThreadCPUTime() {        return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();    }    public static void main(String[] args) {        PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();        poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));    }}/** * 自定义的异步IO任务 * @author Will * */class AsyncIOTask implements Runnable {    public void run() {        HttpURLConnection connection = null;        BufferedReader reader = null;        try {            String getURL = "http://baidu.com";            URL getUrl = new URL(getURL);            connection = (HttpURLConnection) getUrl.openConnection();            connection.connect();            reader = new BufferedReader(new InputStreamReader(                    connection.getInputStream()));            String line;            while ((line = reader.readLine()) != null) {                // empty loop            }        }        catch (IOException e) {        } finally {            if(reader != null) {                try {                    reader.close();                }                catch(Exception e) {                }            }            connection.disconnect();        }    }}

得到如下输出:

Target queue memory usage (bytes): 100000createTask() produced threadpool.AsyncIOTask which took 40 bytes in a queueFormula: 100000 / 40* Recommended queue capacity (bytes): 2500Number of CPU: 8Target utilization: 1Elapsed time (nanos): 3000000000Compute time (nanos): 280801800Wait time (nanos): 2719198200Formula: 8 * 1 * (1 + 2719198200 / 280801800)* Optimal thread count: 88

推荐的任务队列大小为2500,线程数为88。依次为依据,我们就可以构造这样一个线程池:

ThreadPoolExecutor pool = new ThreadPoolExecutor(88, 88, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(2500));

可以将这个文件打包成可执行的jar文件,这样就可以拷贝到测试/正式环境上执行。

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">    <modelVersion>4.0.0</modelVersion>    <groupId>threadpool</groupId>    <artifactId>dark-magic</artifactId>    <version>1.0-SNAPSHOT</version>    <packaging>jar</packaging>    <name>dark_magic</name>    <url>http://maven.apache.org</url>    <properties>        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>    </properties>    <dependencies>    </dependencies>    <build>        <finalName>dark-magic</finalName>        <plugins>            <plugin>                <artifactId>maven-assembly-plugin</artifactId>                <configuration>                    <appendAssemblyId>false</appendAssemblyId>                    <descriptorRefs>                        <descriptorRef>jar-with-dependencies</descriptorRef>                    </descriptorRefs>                    <archive>                        <manifest>                            <!-- 此处指定main方法入口的class -->                            <mainClass>threadpool.SimplePoolSizeCaculatorImpl</mainClass>                        </manifest>                    </archive>                </configuration>                <executions>                    <execution>                        <id>make-assembly</id>                        <phase>package</phase>                        <goals>                            <goal>assembly</goal>                        </goals>                    </execution>                </executions>            </plugin>        </plugins>    </build></project>

来源:

www.cnblogs.com/cjsblog/p/9068886.html

参考:

http://ifeve.com/how-to-calculate-threadpool-size/
http://www.importnew.com/17384.html
https://www.cnblogs.com/cherish010/p/8334952.html

(0)

相关推荐

  • 写给小白看的线程池,还有10道面试题

    如何搞定20k的面试小抄 为什么要用线程池呢? 下面是一段创建线程并运行的代码: for (int i = 0; i < 100; i++) {     new Thread(() ->  ...

  • 1000个并发线程,10台机器,每台机器4核,设计线程池大小

    这是why哥的第 71 篇原创文章 一道面试题 兄弟们,怎么说? 我觉得如果你工作了两年左右的时间,或者是突击准备了面试,这题回答个八成上来,应该是手到擒来的事情.这题中规中矩,考点清晰,可以说的东西 ...

  • C#线程学习笔记三:线程池中的I/O线程

    本笔记摘抄自:https://www.cnblogs.com/zhili/archive/2012/07/20/MultiThreads.html,记录一下学习过程以备后续查用.     一.I/O线 ...

  • 多线程之旅(ThreadPool 线程池)

    一.什么是ThreadPool 线程池(源码) 1.线程池顾名思义,有我们的系统创建一个容器装载着我们的线程,由CLR控制的所有AppDomain共享.线程池可用于执行任务.发送工作项.处理异步 I/ ...

  • Java主线程等待子线程、线程池

    print public class TestThread extends Thread { public void run() { System.out.println(this.getName() ...

  • 线程池ThreadPoolExecutor源码分析,看这一篇就够了

    前言 多线程是我们日常工作中很少能接触到的技术,但是面试的时候100%会被问到,万一工作中用到了基本不会,本篇咱们就来深入分析线程池的实现类ThreadPoolExecutor. 1.构造方法 构造方 ...

  • 分析源码,学会正确使用 Java 线程池

    在日常的开发工作当中,线程池往往承载着一个应用中最重要的业务逻辑,因此我们有必要更多地去关注线程池的执行情况,包括异常的处理和分析等.本文主要聚焦在如何正确使用线程池上,以及提供一些实用的建议.文中会 ...

  • 5000字、12 连环炮、一张图快速搞定线程池

    回复"000"获取大量电子书 写在前面 前面文章中,我们总结了JVM18连环炮.并发并最基础的12连环炮,建议先阅读: 连环炮继续走起,今天我给大家总结了线程池的12连环炮. 1. ...

  • 详述Java线程池实现原理

    优质文章,第一时间送达一.写在前面1.1 线程池是什么线程池(Thread Pool) 是一种池化思想管理线程的工具,经常出现在多线程服务器中,如MySQL.线程过多会带来额外的开销,其中包括创建销毁 ...

  • 10问10答:你真的了解线程池吗?

    <Java开发手册>中强调,线程资源必须通过线程池提供,而创建线程池必须使用ThreadPoolExecutor.手册主要强调利用线程池避免两个问题,一是线程过渡切换,二是避免请求过多时造 ...