价值300和价值30000的埋点方案有什么区别?

诸葛君说:埋点技术并不难,简单来说也就是在一些关键环节埋上统计代码,埋点是一把锄头,但能种出什么样的庄稼还得看用锄头的人。做埋点方案时要以什么为目标?要怎么配置埋点方式?

一、数据埋点方案要怎么做?

埋点听起来“不明觉厉”,其实非常的简单,就如同“在公路上安装摄像头”。

1、梳理产品用户行为,确定事件布点

埋点方案≈摄像头安装的分布方案

经常有童鞋咨询诸葛君:究竟获取哪些数据来进行数据分析?回答这个问题,先要明确目的,厘清逻辑。

诸葛io数据分析的对象和基础是用户行为,选择记录和分析哪些用户行为,直接影响到分析工作的价值产出,诸葛君建议:选择与产品目标和当下首要问题最为密切相关的用户行为,作为事件。以电商为例,将流程中的每个用户行为定义为一类事件,从中获得事件布点的逻辑。

2、记录事件,了解分析用户行为

确定摄像头要记录的信息,是违章拍照还是测速?

对需要记录和分析的用户行为进行梳理,并完成事件布点表后,接下来,需要在研发工程师的协助下,根据您应用的平台类型(iOS、Android、JS)完成SDK的接入,每个事件的布点,将变成一段非常简短的程序代码——当用户做相应的行为时,您的应用会运行这段代码,向诸葛io记录相应事件。在布点完成、产品发版后,用户开始使用新版的应用时,使用行为的数据就会自动传递到诸葛io,以便您进行下面的分析。

这一步,诸葛io的CS团队将为企业提供支持,协助技术团队顺利完成数据采集的第一步。

3、通过identify记录用户身份

在诸葛io中记录了用户的行为,即:用户做了什么? 在对用户分析的过程中,还有一类信息是很有用的,即:用户是谁(TA的id、名字)以及具备什么特点(TA的年龄、类型……)?您可以通过诸葛io平台的identify过程,将用户的身份及特点传递给诸葛io,利用identify的信息进行精细化分析:

细分用户群:用户属性的一个很重要的作用就是将用户分群。您可以根据identify的属性定义筛选条件,进行用户群的细分,比如用「性别=女」的条件将所有的妹子筛选出来,然后分析妹子们的行为特点和转化率……

基于属性的对比:细分的重要目的之一就是对比,您可以基于「性别」细分,然后对比「妹子们」和「汉子们」的行为、转化、留存等的区别;

基于属性的人群画像:您可以基于用户属性,对产品的任意用户群进行「画像分析」——该用户群的男女比例、地区分布、年龄层次、用户类型……

二、埋点方案对应的埋点方式怎么做?

《代码埋点,全埋点,可视化埋点,服务端埋点》这篇文章中我们介绍了4种埋点方式,但在具体方案的执行上,需要考虑对应的埋点方式。

正如同硬币有两面,任何单一的埋点方式都存在优点与缺点,企图通过简单粗暴的几行代码/一次部署、甚至牺牲用户体验的埋点方式,都不是企业所期望的。要满足精细化、精准化的数据分析需求,可根据实际需要的分析场景,选择一种或多种组合的采集方式,毕竟采集全量数据不是目的,实现有效的数据分析,从数据中找到关键决策信息实现增长才是重中之重。

因此,数据采集只是数据分析的第一步,数据分析的目的是洞察用户行为,挖掘用户价值,进而促进业务增长,故最理想的埋点方案是根据根据不同的业务和场景以及行业特性和自身实际需求,将埋点通过优劣互补方式进行组合,比如:

1、代码埋点+全埋点:在需要对落地页进行整体点击分析时,细节位置逐一埋点的工作量相对较大,且在频繁优化调整落地页时,更新埋点的工作量更加不容小觑,但复杂的页面存在着全埋点不能采集的死角,因此,可将代码埋点作为辅助,将用户核心行为进行采集,从而实现精准的可交叉的用户行为分析;

2、代码埋点+服务端埋点:以电商平台为例, 用户在支付环节,由于中途会跳转到第三方支付平台,是否支付成功需要通过服务器中的交易数据来验证,此时可通过代码埋点和服务端埋点相结合的方式,提升数据的准确性;

3、代码埋点+可视化埋点:因代码埋点的工作量大,可通过核心事件代码埋点,可视化埋点用于追加和补充的方式采集数据。

(0)

相关推荐