巧解初中几何题:二倍角问题辅助线的添加规律

一些几何题中常含有一个角是另一个角的二倍的条件,处理这类问题常用如下的方法添加辅助线:

(1)作二倍角的平分线,构成等腰三角形.

如下图,在△ABC中,∠ABC=2∠C,作∠ABC的角平分线交AC于点D,则∠DBC=∠C,△DBC是等腰三角形.

(2)延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形,利用等腰三角形的性质证题.

如下图,在△ABC中,∠B=2∠C,可延长CB到D,使BD=AB,连接AD,则△ABD、△ADC都是等腰三角形.

【典例】已知,如下图所示,在△ABC中,∠C=2∠A,AC=2BC,求证:∠B=90°.

思路一:要证∠B=90°,可设法证∠B等于某个直角.由∠C=2∠A,可联想作∠C的角平分线CE,则△ACE是等腰三角形,如果作这个等腰三角形底边上的高ED,则出现直角,再证∠B=∠CDE即可.

【证法一】如下图,作∠C的平分线CE交AB于点E,过E作ED⊥AC于D.

则∠ACE=∠A,∴AE=CE.∵ED⊥AC,∴CD=1/2AC. ∵AC=2BC,∴CD=CB. 则可证得△CDE≌△CBE.

即∠B=∠CDE=90°.

思路二:作∠C的平分线CD,将△CDA沿CD翻折过来,得△CDE.要证∠ABC=90°,需证CD=ED,BC=BE.

【证法二】如下图,作∠C的平分线CD,延长CB到E,使CE=AC,∴AC=BC+BE. ∵AC=2BC,∴BC=BE.

在△ACD和△ECD中,AC=EC,∠ACD=∠ECD,CD=CD,∴△ACD≌△ECD. ∴∠A=∠E,又∠DCB=∠DCA=∠A,

∴∠E=∠DCB. ∴DC=DE. ∴∠ABC=90°.

思路三:延长AC到D,使CD=BC,连接BD,则△CBD和△ABD都是等腰三角形,由条件AC=2BC,可联想到取AC的中点E,连接BE,则∠DBE=90°.要证∠ABC=90°,只需证∠ABE=∠DBC.

【证法三】延长AC到D,使CD=CB,连接BD.取AC的中点E,连接BE,如下图

则EC=CD=BC,∴∠DBE=90°. ∵CD=CB,∴ ∠D=∠CBD ∴ ∠ACB=2∠D ∵ ∠ACB=2∠A, ∴ ∠A=∠D

∴ AB=BD 又∵AE=DC ∴ △ABE≌△DBC. ∴ ∠ABE=∠DBC ∴ ∠ABC= ∠EBD=90°.

【总结】

关于二倍角问题,上面介绍了两种添加辅助线的方法,其主要目的都是为了构造等腰三角形和全等三角形,然后利用它们的相关性质探求解题途径.

【配套练习】

1、已知:△ABC中,∠ACB=2∠B.求证:2AC>AB.

2、已知:AD是△ABC的中线,∠C=2∠B,AC=1/2BC. 求证:△ADC是等边三角形.

【答案】

1、延长BC到D,使CD=AC,连接AD,则AD=AB,∵AC+CD>AD ∴ 2AC>AB.

2、思路一:延长DC到E,使CE=AC,连接AE,则△ACE、△ABE都是等腰三角形,可证得△ABD≌△AEC,则AD=AC. 又∵AC=DC ∴ AC=DC =AD.

思路二:作∠C的平分线CF,连接FD,则∠FCB=1/2∠ACB,证△ACF≌△DCF可得.                                                         来源网络|侵删

(0)

相关推荐

  • 三角形中的常用辅助线汇总

    一.方法概述 几何的难点就在辅助线.辅助线如何添?把握定理和概念,还要刻苦加钻研,找出 规律凭经验. (一)找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两 ...

  • 初中几何题中二倍角问题辅助线的添加规律

    一些几何题中常含有一个角是另一个角的二倍的条件,处理这类问题常用如下的方法添加辅助线: (1)作二倍角的平分线,构成等腰三角形. 如下图,在△ABC中,∠ABC=2∠C,作∠ABC的角平分线交AC于点 ...

  • 【八上几何】二倍角问题辅助线的添加规律

    (1)作二倍角的平分线,构成等腰三角形. 如下图,在△ABC中,∠ABC=2∠C,作∠ABC的角平分线交AC于点D,则∠DBC=∠C,△DBC是等腰三角形. (2)延长二倍角的一边,使其等于二倍角的另 ...

  • 数学游戏与好题巧解 | 第295题——差倍问题

    开拓思路.启迪思维.激发兴趣 [第295题] 详细解答在文末 使用给出的四个数字,利用加减乘除算出24 3.4.6.10 小学数学好题巧解(1~100) 小学数学好题巧解(100~200) 数学游戏与 ...

  • 数学游戏与好题巧解 | 第294题——和倍问题

    开拓思路.启迪思维.激发兴趣 [第294题] 详细解答在文末 使用给出的四个数字,利用加减乘除算出24 2.5.5.8 小学数学好题巧解(1~100) 小学数学好题巧解(100~200) 数学游戏与好 ...

  • 数学游戏与好题巧解 | 第264题——差倍问题

    开拓思路.启迪思维.激发兴趣 [第264题] [思路与解法] 使用给出的四个数字,利用加减乘除算出24 2.5.7.7 小学数学好题巧解 | 第1题 小学数学好题巧解 | 第2题 小学数学好题巧解 | ...

  • 数学游戏与好题巧解 | 第263题——和倍问题

    开拓思路.启迪思维.激发兴趣 [第263题] [思路与解法] 使用给出的四个数字,利用加减乘除算出24 1.6.7.10 小学数学好题巧解 | 第1题 小学数学好题巧解 | 第2题 小学数学好题巧解 ...

  • 数学游戏与好题巧解 | 第261题——二次正归一应用题

    开拓思路.启迪思维.激发兴趣 [第261题] [思路与解法] 使用给出的四个数字,利用加减乘除算出24 2.2.3.10 小学数学好题巧解 | 第1题 小学数学好题巧解 | 第2题 小学数学好题巧解 ...

  • 数学游戏与好题巧解 | 第233题——差倍问题

    开拓思路.启迪思维.激发兴趣 [第233题] 六(1)班的同学参加兴趣小组,已知参加语文小组的同学比参加数学小组的同学多26人,且语文小组的人数比数学小组人数的3倍少14人,问:参加两类兴趣小组的同学 ...

  • 数学游戏与好题巧解 | 第232题——和倍问题

    开拓思路.启迪思维.激发兴趣 [第232题] 某校四.五年级共有学生165人,四年级的学生人数比五年级的2倍少6人.问:四.五年级各有学生多少人? [思路与解法] 使用给出的四个数字,利用加减乘除算出 ...