刘保乾——三角形秩序图工程通讯(7)


刘健著《三正弦不等式》

哈尔滨工业大学出版社,2018


本书介绍了作者在几何不等式领城的一项发现——三正弦不等式,着重讨论了它的应用,由此推导出了大量涉及三角形的不等式,其中包含许多著名结果,如Wolstenholme不等式.Kooi不等式、Klamkin惯性极矩不等式、Erdös-Mordell不等式、Neuberg-Pedoe不等式、Cerretsen不等式、林鹤一不等式、锐角三角形的Walker 不等式、推广的Euler不等式.作者在本书中还针对相关结果提出了大量经过计算机验证的不等式猜想,可供有兴趣的读者研究.

附录A介绍了有关三角形与一点的几何变换理论(便于书中一些几何不等式的推导),附录B介绍了作者建立的一些涉及多个三角形不等式的结果,其中包含了三正弦不等式的推广.

zb:={[1,[80, 95, 79, 38, 47, 24, 77], [1]], [2, [57, 42, 100, 76, 67, 69, 93, 92], [58,3, 4, 60, 70, 30]], [3, [2, 6, 43, 81, 31], [38]], [4, [2, 6, 43, 81, 31], [95,8]], [5, [72, 69, 65], [58, 53, 70, 30]], [6, [52, 23, 96, 85, 15], [3, 4,24]], [7, [13, 14], [80, 72]], [8, [4, 30], [38]], [9, [68, 73, 71, 39], [57,94, 67, 64, 13]], [10, [53, 45], [62, 82, 47, 89, 11, 17]], [11, [28, 42, 10,92], [23, 84, 101]], [12, [12], [50, 21]], [13, [40, 9, 18, 20], [7, 41, 43,87, 97]], [14, [40, 18], [7, 28, 41, 67, 69, 64, 97]], [15, [62, 89, 17], [6,77, 37]], [16, [97], [53, 42, 100, 93, 92]], [17, [42, 10, 93, 92], [84, 15,101]], [18, [19], [94, 13, 14]], [19, [32, 55], [57, 49, 63, 18, 20]], [20,[19], [75, 28, 94, 67, 64, 13]], [21, [12], [46]], [22, [46], [54, 61, 34]],[23, [11], [6, 77, 37]], [24, [74, 75, 6, 48, 84, 30, 101], [1]], [25, [50,34], [74, 63, 68, 71, 81, 31, 39]], [26, [50, 98], [99]], [27, [53, 60, 85,30], [56]], [28, [49, 63, 71, 14, 20, 45], [43, 48, 82, 11]], [29, [76, 66,34], [74, 31]], [30, [2, 5, 81, 31, 45], [8, 82, 24, 37, 27]], [31, [33, 25,55, 51, 29], [3, 4, 47, 30]], [32, [33], [40, 71, 81, 19, 45]], [33, [36, 35],[32, 31, 99]], [34, [22], [36, 25, 55, 35, 29]], [35, [50, 34], [74, 33, 68,73, 51]], [36, [50, 34], [74, 33, 51, 78]], [37, [52, 23, 91, 96, 60, 70, 85,15, 30], [95]], [38, [3, 8, 91, 83, 70, 44], [1]], [39, [25, 55], [9]], [40,[32, 55], [49, 13, 14]], [41, [13, 14], [80, 72]], [42, [72, 88, 65, 16], [62,2, 47, 91, 89, 11, 17]], [43, [52, 28, 65, 13], [3, 4, 47, 84, 101]], [44, [57,94], [86, 38, 82, 60]], [45, [32, 59, 51], [52, 28, 10, 91, 30]], [46, [21],[22, 59, 98]], [47, [74, 75, 42, 43, 48, 10, 100, 67, 81, 93, 31, 99, 92],[1]], [48, [52, 28, 68, 73], [95, 47, 24]], [49, [40, 51, 19], [28, 67, 69,64]], [50, [12], [36, 76, 66, 25, 55, 35, 26]], [51, [36, 35], [49, 63, 81, 31,99, 45]], [52, [69, 45], [75, 6, 43, 48, 37]], [53, [5, 16], [10, 27]], [54,[22], [76, 66, 67]], [55, [50, 34], [40, 68, 73, 71, 81, 31, 19, 39]], [56,[27], [77]], [57, [9, 19], [2, 87, 44, 90]], [58, [2, 5, 66, 83], [77]], [59,[46], [76, 66, 69, 45, 78]], [60, [2, 83, 44], [37, 27]], [61, [22], [63, 76,66]], [62, [42, 10, 100, 93, 92], [84, 15]], [63, [25, 61, 51, 19], [28, 64]],[64, [49, 63, 9, 14, 20], [65]], [65, [64], [5, 42, 43, 92]], [66, [50, 59, 54,61], [58, 70, 81, 29]], [67, [49, 9, 54, 14, 20], [2, 47]], [68, [25, 55, 35],[48, 9]], [69, [49, 59, 14], [52, 2, 5, 91]], [70, [2, 5, 66], [38, 77, 37]],[71, [32, 25, 55], [28, 9]], [72, [7, 41], [5, 42, 100, 85, 92]], [73, [55,35], [48, 9]], [74, [36, 25, 35, 29], [95, 47, 24]], [75, [52, 20, 78], [95,79, 47, 24]], [76, [50, 59, 54, 61], [2, 81, 29]], [77, [58, 86, 23, 82, 91,96, 56, 70, 15, 90], [1]], [78, [36, 59, 98], [75, 101, 99]], [79, [75, 99],[1]], [80, [7, 86, 41, 93, 90], [1]], [81, [32, 76, 66, 25, 55, 51], [3, 4, 47,30]], [82, [28, 10, 83, 30, 44], [77]], [83, [87], [58, 38, 82, 86, 60]], [84,[62, 43, 89, 11, 85, 17], [95, 24]], [85, [72, 88, 93], [6, 84, 37, 27]], [86,[83, 44], [80, 77]], [87, [57, 88, 13], [83]], [88, [94], [42, 100, 87, 85]],[89, [42, 10, 100, 93, 92], [84, 96, 15]], [90, [57, 94], [80, 77]], [91, [42,69, 45], [38, 77, 37]], [92, [72, 65, 16], [62, 2, 47, 89, 11, 17]], [93, [16],[80, 62, 2, 47, 89, 85, 17]], [94, [9, 18, 20], [88, 97, 44, 90]], [95, [74,75, 4, 48, 84, 37, 101], [1]], [96, [89], [6, 77, 37]], [97, [94, 13, 14],[16]], [98, [46], [26, 78]], [99, [33, 51, 26, 78], [79, 47]], [100, [72, 88,16], [62, 2, 47, 89, 101]], [101, [43, 100, 11, 17, 78], [95, 24]]};

id:={[1, 1], [s^2/(16*R*r-5*r^2), 80],

[(ra+rb+rc)/(wb*wc/wa+wc*wa/wb+wa*wb/wc),95], [(4*R^2+4*R*r+3*r^2)/s^2, 79],

[(cos(A)^2+cos(B)^2+cos(C)^2)/(sin((1/2)*A)^2+sin((1/2)*B)^2+sin((1/2)*C)^2),74],

[(cos((1/2)*A)^2+cos((1/2)*B)^2+cos((1/2)*C)^2)/(sin(A)^2+sin(B)^2+sin(C)^2),75],

[(cot(A)+cot(B)+cot(C))/(tan((1/2)*A)+tan((1/2)*B)+tan((1/2)*C)),57],

[(sin((1/2)*A)+sin((1/2)*B)+sin((1/2)*C))/(cos(A)+cos(B)+cos(C)),58],

[(2*(cos(A)^2+cos(B)^2+cos(C)^2))/(cos(A)+cos(B)+cos(C)),54],

[(2*(cos(A)^2+cos(B)^2+cos(C)^2))/(sin((1/2)*A)+sin((1/2)*B)+sin((1/2)*C)),66],

[(2*(sin((1/2)*A)^2+sin((1/2)*B)^2+sin((1/2)*C)^2))/(cos(A)+cos(B)+cos(C)),67],

[(3*(cos(A)^2+cos(B)^2+cos(C)^2))/(cos((1/2)*A)^2+cos((1/2)*B)^2+cos((1/2)*C)^2),76],

[(3*(cos(A)^2+cos(B)^2+cos(C)^2))/(sin(A)^2+sin(B)^2+sin(C)^2),59],

[(3*(cot(A)+cot(B)+cot(C)))/(cot((1/2)*A)+cot((1/2)*B)+cot((1/2)*C)),60],

[(1/3*(tan((1/2)*A)+tan((1/2)*B)+tan((1/2)*C)))*sqrt(3),11],

[(1/4*(sqrt(1-tan((1/2)*B)*tan((1/2)*C))/cos((1/2)*A)+sqrt(1-tan((1/2)*C)*tan((1/2)*A))/cos((1/2)*B)+sqrt(1-tan((1/2)*A)*tan((1/2)*B))/cos((1/2)*C)))*sqrt(2),84],

[(1/6*(a/ma+b/mb+c/mc))*sqrt(3),91], [(1/6*(a/wa+b/wb+c/wc))*sqrt(3), 88],

[(1/6*(sqrt(a/(s-a))+sqrt(b/(s-b))+sqrt(c/(s-c))))*sqrt(2),100],

[(1/9*(wa/(s-a)+wb/(s-b)+wc/(s-c)))*sqrt(3),89],

[(1/9*(cot((1/2)*A)*cos((1/2)*B-(1/2)*C)+cot((1/2)*B)*cos((1/2)*A-(1/2)*C)+cot((1/2)*C)*cos((1/2)*A-(1/2)*B)))*sqrt(3),83],

[(2/9*(ma/a+mb/b+mc/c))*sqrt(3),87],

[(2/9*(cos(A)*cot((1/2)*A)+cos(B)*cot((1/2)*B)+cos(C)*cot((1/2)*C)))*sqrt(3),25],

[(2/9*(sqrt(1-cos(B)*cos(C))+sqrt(1-cos(C)*cos(A))+sqrt(1-cos(A)*cos(B))))*sqrt(3),82],

[1/((cos(A)+cos(B))*(cos(B)+cos(C))*(cos(A)+cos(C))),50],

[(2*(cos(A)^2+cos(B)^2+cos(C)^2))*sqrt(3)/(sin(A)+sin(B)+sin(C)),61],

[(2*(sin((1/2)*A)^2+sin((1/2)*B)^2+sin((1/2)*C)^2))*sqrt(3)/(sin(A)+sin(B)+sin(C)),64],

[(1/9*(cos(A)+cos(B)+cos(C)))*(1/sin(A)+1/sin(B)+1/sin(C))*sqrt(3),85],

[sqrt(3)*(sin((1/2)*A)+sin((1/2)*B)+sin((1/2)*C))/(sin(A)+sin(B)+sin(C)),62],

[9/(4*sin(A)^2+4*sin(B)^2+4*sin(C)^2),52],

[9/(4*sin(A)*sin(B)+4*sin(B)*sin(C)+4*sin(C)*sin(A)),49],

[3/(2*cos(A)+2*cos(B)+2*cos(C)),2],

[3/(2*sin((1/2)*A)+2*sin((1/2)*B)+2*sin((1/2)*C)),3], [(1/16)*R^4/r^4, 12],

[(1/9)*(ma+mb+mc)/r,94],

[(1/2)*((cos(A)+cos(B))^2+(cos(B)+cos(C))^2+(cos(A)+cos(C))^2)/(cos(A)+cos(B)+cos(C)),47],

[(4/3)*(cos((1/2)*A)^4+cos((1/2)*B)^4+cos((1/2)*C)^4)/(cos((1/2)*A)^2+cos((1/2)*B)^2+cos((1/2)*C)^2),24],

[(1/6)*(cos((1/2)*A)*(sin(B)+sin(C))+cos((1/2)*B)*(sin(C)+sin(A))+cos((1/2)*C)*(sin(A)+sin(B)))/(sin((1/2)*B)*sin((1/2)*C)+sin((1/2)*C)*sin((1/2)*A)+sin((1/2)*A)*sin((1/2)*B)),77],

[(1/3)*(cos((1/2)*B)*cos((1/2)*C)+cos((1/2)*C)*cos((1/2)*A)+cos((1/2)*A)*cos((1/2)*B))/(sin((1/2)*B)*sin((1/2)*C)+sin((1/2)*C)*sin((1/2)*A)+sin((1/2)*A)*sin((1/2)*B)),96],

[(3/2)*(cot(A)+cot(B)+cot(C))/(cos((1/2)*A)+cos((1/2)*B)+cos((1/2)*C)),68],

[(3/2)*(cot(A)+cot(B)+cot(C))/(sin(A)+sin(B)+sin(C)),55],

[(1/3)*(sin(A)+sin(B)+sin(C))^2/(sin(B)*sin(C)+sin(C)*sin(A)+sin(A)*sin(B)),56],

[(3/2)*(tan((1/2)*A)+tan((1/2)*B)+tan((1/2)*C))/(sin(A)+sin(B)+sin(C)),69],

[9/((2*(tan((1/2)*A)+tan((1/2)*B)+tan((1/2)*C)))*(sin(A)+sin(B)+sin(C))),37],

[(1/3)*sqrt(3)*(1/(cos((1/2)*A)+cos((1/2)*B))+1/(cos((1/2)*B)+cos((1/2)*C))+1/(cos((1/2)*C)+cos((1/2)*A))),4],

[(1/3)*sqrt(3)*(1/(sin(A)+sin(B))+1/(sin(B)+sin(C))+1/(sin(C)+sin(A))),5],

[(2/3)*sqrt(3)*(1/(2*sin(A)+sin(B)+sin(C))+1/(2*sin(B)+sin(C)+sin(A))+1/(2*sin(C)+sin(A)+sin(B))),53], [(1/6)*sqrt(3)*(1/cos((1/2)*A)+1/cos((1/2)*B)+1/cos((1/2)*C)), 6],

[(1/6)*sqrt(3)*(1/sin(A)+1/sin(B)+1/sin(C)),7], [(2/9)*sqrt(3)*(wa/a+wb/b+wc/c), 86],[(1/6)*sqrt(3)*((cot(B)+cot(C))/(cos(B)+cos(C))+(cot(C)+cot(A))/(cos(A)+cos(C))+(cot(A)+cot(B))/(cos(A)+cos(B))),32],

[(1/36)*sqrt(3)*((cot((1/2)*A)+cot((1/2)*B))^2/cot((1/2)*C)+(cot((1/2)*B)+cot((1/2)*C))^2/cot((1/2)*A)+(cot((1/2)*C)+cot((1/2)*A))^2/cot((1/2)*B)),46],

[(1/18)*sqrt(3)*((cot((1/2)*B)+cot((1/2)*C))/(cos(B)+cos(C))+(cot((1/2)*C)+cot((1/2)*A))/(cos(A)+cos(C))+(cot((1/2)*A)+cot((1/2)*B))/(cos(A)+cos(B))),33],

[(1/6)*sqrt(3)*((tan((1/2)*B)+tan((1/2)*C))/(cos(B)+cos(C))+(tan((1/2)*C)+tan((1/2)*A))/(cos(A)+cos(C))+(tan((1/2)*A)+tan((1/2)*B))/(cos(A)+cos(B))),36],

[(2/3)*sqrt(3)*(cos(A)*tan((1/2)*B)+cos(B)*tan((1/2)*C)+cos(C)*tan((1/2)*A)),28],

[(2/9)*sqrt(3)*(cos((1/2)*A)/(cos(B)+cos(C))+cos((1/2)*B)/(cos(A)+cos(C))+cos((1/2)*C)/(cos(A)+cos(B))),40],

[(2/9)*sqrt(3)*(cos((1/2)*A)/(sin((1/2)*B)+sin((1/2)*C))+cos((1/2)*B)/(sin((1/2)*A)+sin((1/2)*C))+cos((1/2)*C)/(sin((1/2)*A)+sin((1/2)*B))),38],

[(1/3)*sqrt(3)*(cot(A)/(cos(B)+cos(C))+cot(B)/(cos(A)+cos(C))+cot(C)/(cos(A)+cos(B))),21],

[(1/9)*sqrt(3)*(cot((1/2)*A)/(cos(B)+cos(C))+cot((1/2)*B)/(cos(A)+cos(C))+cot((1/2)*C)/(cos(A)+cos(B))),22],

[(1/9)*sqrt(3)*(cot((1/2)*A)/(sin((1/2)*B)+sin((1/2)*C))+cot((1/2)*B)/(sin((1/2)*A)+sin((1/2)*C))+cot((1/2)*C)/(sin((1/2)*A)+sin((1/2)*B))),41],

[(2/9)*sqrt(3)*(sin(A)/(cos(B)+cos(C))+sin(B)/(cos(A)+cos(C))+sin(C)/(cos(A)+cos(B))),23],[(2/3)*sqrt(3)*(sin((1/2)*A)/(sin(B)+sin(C))+sin((1/2)*B)/(sin(C)+sin(A))+sin((1/2)*C)/(sin(A)+sin(B))),42],

[(4/9)*sqrt(3)*(sin((1/2)*A)/(tan((1/2)*B)+tan((1/2)*C))+sin((1/2)*B)/(tan((1/2)*C)+tan((1/2)*A))+sin((1/2)*C)/(tan((1/2)*A)+tan((1/2)*B))),43],

[(2/3)*sqrt(3)*(tan((1/2)*A)^2/(tan((1/2)*A)+tan((1/2)*B))+tan((1/2)*B)^2/(tan((1/2)*B)+tan((1/2)*C))+tan((1/2)*C)^2/(tan((1/2)*C)+tan((1/2)*A))),63],

[(1/9)*sqrt(3)*((cot((1/2)*A)+cot((1/2)*B))*(cot((1/2)*C)+cot((1/2)*A))/(2*cot((1/2)*A)+cot((1/2)*B)+cot((1/2)*C))+(cot((1/2)*A)+cot((1/2)*B))*(cot((1/2)*B)+cot((1/2)*C))/(2*cot((1/2)*B)+cot((1/2)*A)+cot((1/2)*C))+(cot((1/2)*C)+cot((1/2)*A))*(cot((1/2)*B)+cot((1/2)*C))/(2*cot((1/2)*C)+cot((1/2)*A)+cot((1/2)*B))),72],

[(16/27)*sqrt(3)*(cos((1/2)*A)^2*cos((1/2)*B)^2/cot((1/2)*C)+cos((1/2)*B)^2*cos((1/2)*C)^2/cot((1/2)*A)+cos((1/2)*C)^2*cos((1/2)*A)^2/cot((1/2)*B)),48],

[(3/2)*sqrt(3)/(cos((1/2)*A)+cos((1/2)*B)+cos((1/2)*C)),8],

[(1/3)*sqrt(3)*(cot(A)+cot(B)+cot(C)),9], [(3/2)*sqrt(3)/(sin(A)+sin(B)+sin(C)), 10],

[(1/2)*(tan((1/2)*A)+tan((1/2)*B)+tan((1/2)*C))*sqrt(3)/(cos(A)+cos(B)+cos(C)),65],

[(1/3)*sqrt(3)*(cos((1/2)*A)+cos((1/2)*B)+cos((1/2)*C))/(cos(A)+cos(B)+cos(C)),70],

[(1/2)*sqrt(3)*(cot(A)+cot(B)+cot(C))/(sin((1/2)*A)+sin((1/2)*B)+sin((1/2)*C)),73],

[(1/6)*sqrt(3)*(cot((1/2)*A)+cot((1/2)*B)+cot((1/2)*C))/(cos(A)+cos(B)+cos(C)),71],

[(3/8)*sqrt(3)*(cot(B)+cot(C))*(cot(C)+cot(A))*(cot(A)+cot(B)),35],

[(1/72)*sqrt(3)*(cot((1/2)*B)+cot((1/2)*C))*(cot((1/2)*C)+cot((1/2)*A))*(cot((1/2)*A)+cot((1/2)*B)),34],

[3*sqrt(3)/((sin(A)+sin(B))*(sin(B)+sin(C))*(sin(C)+sin(A))), 51],

[(1/9)*sqrt(3)*cot((1/2)*A)*cot((1/2)*B)*cot((1/2)*C),13],

[1/(3*cos(A)+3*cos(B))+1/(3*cos(B)+3*cos(C))+1/(3*cos(C)+3*cos(A)),14],

[1/(3*sin((1/2)*A)+3*sin((1/2)*B))+1/(3*sin((1/2)*B)+3*sin((1/2)*C))+1/(3*sin((1/2)*C)+3*sin((1/2)*A)),15],

[(4/3)*cos(A)^2+(4/3)*cos(B)^2+(4/3)*cos(C)^2, 29],

[(4/3)*sin((1/2)*A)^2+(4/3)*sin((1/2)*B)^2+(4/3)*sin((1/2)*C)^2,30],

[(1/3)*ma/ha+(1/3)*mb/hb+(1/3)*mc/hc,93],

[(2/3)*ma/(hb+hc)+(2/3)*mb/(hc+ha)+(2/3)*mc/(ha+hb),97],

[(1/6)*(rb+rc)/ma+(1/6)*(rc+ra)/mb+(1/6)*(ra+rb)/mc,101],

[(8/3)*cos(A)*sin((1/2)*B)^2+(8/3)*cos(B)*sin((1/2)*C)^2+(8/3)*cos(C)*sin((1/2)*A)^2,31],

[2*cos(A)^2/(sin(B)^2+sin(C)^2)+2*cos(B)^2/(sin(A)^2+sin(C)^2)+2*cos(C)^2/(sin(A)^2+sin(B)^2),26],

[cos(A)^2/cos((1/2)*A)^2+cos(B)^2/cos((1/2)*B)^2+cos(C)^2/cos((1/2)*C)^2,99],

[(1/9)*cot((1/2)*A)*cot((1/2)*B)+(1/9)*cot((1/2)*B)*cot((1/2)*C)+(1/9)*cot((1/2)*C)*cot((1/2)*A),18],

[(2/3)*sin(A)/(sin(B)+sin(C))+(2/3)*sin(B)/(sin(C)+sin(A))+(2/3)*sin(C)/(sin(A)+sin(B)),27],

[(2/3)*tan((1/2)*A)/(tan((1/2)*B)+tan((1/2)*C))+(2/3)*tan((1/2)*B)/(tan((1/2)*C)+tan((1/2)*A))+(2/3)*tan((1/2)*C)/(tan((1/2)*A)+tan((1/2)*B)),45],

[cos(A)^2/(sin(B)*sin(C))+cos(B)^2/(sin(C)*sin(A))+cos(C)^2/(sin(A)*sin(B)),98],

[(4/9)*sin(A)*sin(B)/(cos(A)+cos(B))+(4/9)*sin(B)*sin(C)/(cos(B)+cos(C))+(4/9)*sin(C)*sin(A)/(cos(A)+cos(C)),44],

[(4/3)*sin((1/2)*A)*sin((1/2)*B)/(cos(A)+cos(B))+(4/3)*sin((1/2)*B)*sin((1/2)*C)/(cos(B)+cos(C))+(4/3)*sin((1/2)*C)*sin((1/2)*A)/(cos(A)+cos(C)),39],

[tan((1/2)*A)^2*ha^2/wa^2+tan((1/2)*B)^2*hb^2/wb^2+tan((1/2)*C)^2*hc^2/wc^2,78],

[(4/9)*mb*mc/(b*c)+(4/9)*mc*ma/(a*c)+(4/9)*ma*mb/(a*b),90],

[(1/9)*wb*wc/((s-b)*(s-c))+(1/9)*wc*wa/((s-c)*(s-a))+(1/9)*wa*wb/((s-a)*(s-b)),92],

[1/(4*cos((1/2)*A)*cos((1/2)*B))+1/(4*cos((1/2)*B)*cos((1/2)*C))+1/(4*cos((1/2)*C)*cos((1/2)*A)),17], [1/(4*sin(A)*sin(B))+1/(4*sin(B)*sin(C))+1/(4*sin(C)*sin(A)), 19],

[1/(12*sin((1/2)*A)*sin((1/2)*B))+1/(12*sin((1/2)*B)*sin((1/2)*C))+1/(12*sin((1/2)*C)*sin((1/2)*A)),20], [1/(6*sin((1/2)*A))+1/(6*sin((1/2)*B))+1/(6*sin((1/2)*C)), 16],

[(2/3)*sqrt(1-sin(B)*sin(C))+(2/3)*sqrt(1-sin(C)*sin(A))+(2/3)*sqrt(1-sin(A)*sin(B)),81]};

刘保乾专集

2020-11-01   获得SOS方法标准表示式的一种通用方法 (续)

2020-10-31   获得SOS方法标准表示式的一种通用方法

2020-10-26   三角形秩序图工程通讯(6)

2020-10-20   一个几何不等式的探讨

2020-10-14   三角形秩序图工程通讯(5)

2020-10-06   用均值不等式证明根式不等式(续2)

2020-10-05   用均值不等式证明根式不等式(续)

2020-10-03   用均值不等式证明一类根式型不等式

2020-09-30   求一个锐角三角形不等式的最佳指数

2020-09-28   一个3元不等式的多元推广

2020-09-19   从“不可靠的数学疯子”的一个不等式谈起

2020-09-16   一个三角形不等式问题

2020-08-18   关于三角形角平分线不等式的一个证明

2020-07-11   四面体元素的对称类型及其应用

2020-07-03   关于三角形伪切弦的一个不等式

2020-06-07   越南网友can hang2007的一个不等式的证明

2020-05-26   Gerretsen不等式的又一个隔离

2020-04-21   三角形秩序图工程通讯(4)

2020-04-18   三角形秩序图工程通讯(3)

2020-04-12   三角形秩序图工程通讯(2)
2020-04-09   三角形秩序图工程通讯(1)
2020-04-01   不等式秩序图动态更新坐标数据的解决办法
2020-03-29   刘健一些不等式的秩序图
2020-03-22   三角形中若干裸角不等式问题 
2020-03-15   用Holder不等式证明局部对称根式型不等式
2020-03-02   三角形中的局部不等式初探
2020-02-25   悬赏征解一个三角形中线不等式
2020-02-23   用Klamkin中线对偶定理建立关于中线的不等式(续)
2020-02-20   用Klamkin中线对偶定理建立关于中线的不等式
2020-02-16   中线锐角三角形的性质初探
2020-02-14   一个不等式探源与无限角代换可扩展不等式猜想
2020-02-12   关于三角形角平分线的一个不等式
2020-02-11   不等式Hcx-47的探讨
2020-02-04   中线锐角三角形的一个局部对称不等式
2020-01-27   一个轮换对称不等式的证明
2020-01-12   锐角三角形中线的一个不等式
2020-01-01   “不等式考试”在自动挑选发现结果中的应用
2019-12-27   若干根式型锐角三角形不等式的证明
2019-12-15   若干三角形几何不等式的sRr非负分拆证明
2019-12-12   有关mb+mc的一个不等式问题征解
2019-12-10   谈刘健的一个不等式放缩技巧
2019-12-08   一个几何不等式征解
2019-11-19   一个不等式的来源及加强式的证明
2019-11-17   褚小光-杨学枝不等式加强式的另证
2019-10-31   一个优美的4元不等式的证明
2019-10-22   竞赛生每日一题(050):一个多元不等式
2019-10-14   再谈一类不等式加强模型及其重要意义
2019-10-11   一篇文章的阅读笔记及一个猜想
2019-09-15   读刘健《三正弦不等式》一书札记(4)
2019-09-13   读刘健《三正弦不等式》一书札记(3)
2019-09-12   读刘健《三正弦不等式》一书札记(2)
2019-09-11   读刘健《三正弦不等式》一书札记(1)
2018-12-29   三角形角平分线倒数和的一个下界
2018-12-24   一个中线不等式的自动化加强方案及加强结果
2018-12-20   也谈《美国数学月刊》问题11945的证明和加强
2018-12-17   一个不等式的证明
2018-12-13   再谈锐角三角形中几个不等式
2018-12-11   再谈一个不等式的加强
2018-12-06   赵忠华提出的一个中线不等式的解答
2018-12-02   一个不等式的加强
2018-06-15   国外一个三角形不等式问题的解答
2018-05-20   一个三角形几何不等式的加强
2018-04-25   一个优美不等式的证明
2018-04-19   一组优美的代数不等式
2018-02-20   试谈发现三角形不等式的7种模型
2018-02-11   刘保乾老师关于一个不等式的另证及加强
2017-12-11   杨志明一个不等式猜想的证明
2017-12-03   王扬老师一个不等式猜想的证明
2017-10-20   王扬老师一个三角形几何不等式的证明

(0)

相关推荐