一个1000元的爬虫外包项目,三种爬虫模式给你轻松做出来
前言
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。
以下文章来源于青灯编程 ,作者:清风
Python爬虫、数据分析、网站开发等案例教程视频免费在线观看
https://space.bilibili.com/523606542
对于这个外包给予的网站信息,那么我们就爬取选择第一个吧<猎聘网>,也就简单实现,并不会进行打包处理,以及输入关键字爬取。
本篇文章就使用三种爬虫模式爬取相关数据
1、常规爬取数据
2、多线程爬取数据
3、scrapy框架爬取数据
基本开发环境
- Python 3.6
- Pycharm
相关模块的使用
常规爬取数据
import requestsimport parselimport csv
多线程爬取数据
import requestsimport parselimport csvimport threading
scrapy框架爬取数据
import scrapyimport csv
目标网页分析
爬取python招聘信息数据
数据获取:
1、标题
2、薪资
3、所在城市
4、学历要求
5、工作经验要求
6、公司名字
7、公司福利
8、公司融资情况
9、简历发布时间
......
该网页是比较简单的,静态网页没有什么可以过多的分析,还是比较简单的。
1、模拟浏览器请求网页,获取网页源代码数据
2、解析网页源代码,提取想要的数据内容
3、将提取的数据内容保存成csv文件,或者其他形式
都说比较简单了,那为什么这个外包还价值1000呢?难道外包赚钱真的这么简单么。是不难,但是不意味着1K的外包就很好赚,毕竟别人只是简单的给出几个网站,首先看你是否能爬取其中的数据,其次甲方的要求肯定不至于此。数据量也不简单。所以今天就以三个版本的爬虫爬取数据。
外包的价格高低因素:
- 任务的难易程度
- 爬取的数据量
- 是否紧急需要
- 是否需要源码
- 后期是否需要更新代码
...
常规爬虫代码
import requestsimport parselimport csvf = open('data.csv', mode='a', encoding='utf-8', newline='')csv_writer = csv.DictWriter(f, fieldnames=['标题', '薪资', '城市', '学历', '工作经验', '公司名字', '融资情况', '公司福利', '招聘时间', '简历反馈时间' ])csv_writer.writeheader()for page in range(0, 10): url = 'https://www.liepin.com/zhaopin/' params = { 'compkind': '', 'dqs': '', 'pubTime': '', 'pageSize': '40', 'salary': '', 'compTag': '', 'sortFlag': '', 'degradeFlag': '0', 'compIds': '', 'subIndustry': '', 'jobKind': '', 'industries': '', 'compscale': '', 'key': 'python', 'siTag': 'I-7rQ0e90mv8a37po7dV3Q~fA9rXquZc5IkJpXC-Ycixw', 'd_sfrom': 'search_fp', 'd_ckId': 'cd74f9fdbdb63c6d462bad39feddc7f1', 'd_curPage': '2', 'd_pageSize': '40', 'd_headId': 'cd74f9fdbdb63c6d462bad39feddc7f1', 'curPage': page, } headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'} response = requests.get(url=url, params=params, headers=headers) selector = parsel.Selector(response.text) lis = selector.css('div.job-content div:nth-child(1) ul li') for li in lis: title = li.css('.job-info h3 a::text').get().strip() money = li.css('.condition span.text-warning::text').get() city = li.css('.condition .area::text').get() edu = li.css('.condition .edu::text').get() experience = li.css('.condition span:nth-child(4)::text').get() company = li.css('.company-name a::text').get() financing = li.css('.field-financing span::text').get() temptation_list = li.css('p.temptation.clearfix span::text').getall() temptation_str = '|'.join(temptation_list) release_time = li.css('p.time-info.clearfix time::text').get() feedback_time = li.css('p.time-info.clearfix span::text').get() dit = { '标题': title, '薪资': money, '城市': city, '学历': edu, '工作经验': experience, '公司名字': company, '融资情况': financing, '公司福利': temptation_str, '招聘时间': release_time, '简历反馈时间': feedback_time, } csv_writer.writerow(dit) print(dit)
实现效果
多线程爬虫
import requestsimport parselimport csvimport threadingf = open('data_1.csv', mode='a', encoding='utf-8', newline='')csv_writer = csv.DictWriter(f, fieldnames=['标题', '薪资', '城市', '学历', '工作经验', '公司名字', '融资情况', '公司福利', '招聘时间', '简历反馈时间' ])csv_writer.writeheader()def get_response(html_url, p): headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'} response = requests.get(url=html_url, params=p, headers=headers) return responsedef get_parsing(html_data): selector = parsel.Selector(html_data) return selectordef main(p): url = 'https://www.liepin.com/zhaopin/' html_data = get_response(url, p).text selector = get_parsing(html_data) lis = selector.css('div.job-content div:nth-child(1) ul li') for li in lis: title = li.css('.job-info h3 a::text').get().strip() money = li.css('.condition span.text-warning::text').get() city = li.css('.condition .area::text').get() edu = li.css('.condition .edu::text').get() experience = li.css('.condition span:nth-child(4)::text').get() company = li.css('.company-name a::text').get() financing = li.css('.field-financing span::text').get() temptation_list = li.css('p.temptation.clearfix span::text').getall() temptation_str = '|'.join(temptation_list) release_time = li.css('p.time-info.clearfix time::text').get() feedback_time = li.css('p.time-info.clearfix span::text').get() dit = { '标题': title, '薪资': money, '城市': city, '学历': edu, '工作经验': experience, '公司名字': company, '融资情况': financing, '公司福利': temptation_str, '招聘时间': release_time, '简历反馈时间': feedback_time, } csv_writer.writerow(dit) print(dit)if __name__ == '__main__': for page in range(0, 10): params = { 'compkind': '', 'dqs': '', 'pubTime': '', 'pageSize': '40', 'salary': '', 'compTag': '', 'sortFlag': '', 'degradeFlag': '0', 'compIds': '', 'subIndustry': '', 'jobKind': '', 'industries': '', 'compscale': '', 'key': 'python', 'siTag': 'I-7rQ0e90mv8a37po7dV3Q~fA9rXquZc5IkJpXC-Ycixw', 'd_sfrom': 'search_fp', 'd_ckId': 'cd74f9fdbdb63c6d462bad39feddc7f1', 'd_curPage': '2', 'd_pageSize': '40', 'd_headId': 'cd74f9fdbdb63c6d462bad39feddc7f1', 'curPage': page, } main_thread = threading.Thread(target=main, args=(params,)) main_thread.start()
实现效果
scrapy爬虫框架
items.py
import scrapyclass LiepingwangItem(scrapy.Item): title = scrapy.Field() money = scrapy.Field() city = scrapy.Field() edu = scrapy.Field() experience = scrapy.Field() company = scrapy.Field() financing = scrapy.Field() temptation_str = scrapy.Field() release_time = scrapy.Field() feedback_time = scrapy.Field()
middlewares.py
class LiepingwangDownloaderMiddleware: def process_request(self, request, spider): request.headers.update( { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36', } ) return Noe
pipelines.py
import csvclass LiepingwangPipeline: def __init__(self): self.file = open('data_2.csv', mode='a', encoding='utf-8', newline='') self.csv_file = csv.DictWriter(self.file, fieldnames=['title', 'money', 'city', 'edu', 'experience', 'company', 'financing', 'temptation_str', 'release_time', 'feedback_time' ]) self.csv_file.writeheader() def process_item(self, item, spider): dit = dict(item) dit['financing'] = dit['financing'].strip() dit['title'] = dit['title'].strip() self.csv_file.writerow(dit) return item def spider_closed(self, spider): self.file.close()
settings.py
ROBOTSTXT_OBEY = FalseDOWNLOADER_MIDDLEWARES = { 'liepingwang.middlewares.LiepingwangDownloaderMiddleware': 543,}ITEM_PIPELINES = { 'liepingwang.pipelines.LiepingwangPipeline': 300,
爬虫文件
import scrapyfrom ..items import LiepingwangItemclass ZpinfoSpider(scrapy.Spider): name = 'zpinfo' allowed_domains = ['liepin.com'] start_urls = ['https://www.liepin.com/zhaopin/?sfrom=click-pc_homepage-centre_searchbox-search_new&d_sfrom=search_fp&key=python'] def parse(self, response): lis = response.css('div.job-content div:nth-child(1) ul li') for li in lis: title = li.css('.job-info h3 a::text').get().strip() money = li.css('.condition span.text-warning::text').get() city = li.css('.condition .area::text').get() edu = li.css('.condition .edu::text').get() experience = li.css('.condition span:nth-child(4)::text').get() company = li.css('.company-name a::text').get() financing = li.css('.field-financing span::text').get() temptation_list = li.css('p.temptation.clearfix span::text').getall() temptation_str = '|'.join(temptation_list) release_time = li.css('p.time-info.clearfix time::text').get() feedback_time = li.css('p.time-info.clearfix span::text').get() yield LiepingwangItem(title=title, money=money, city=city, edu=edu, experience=experience, company=company, financing=financing, temptation_str=temptation_str, release_time=release_time, feedback_time=feedback_time) href = response.css('div.job-content div:nth-child(1) a:nth-child(9)::attr(href)').get() if href: next_url = 'https://www.liepin.com' + href yield scrapy.Request(url=next_url, callback=self.parse)
实现效果
赞 (0)