布丰投针实验详解
1777年,法国数学家布丰(D,Buffon,1707年-1788年)提出了随机投针法并通过投针实验计算出了圆周率π的值,与刘徽的“割圆术”不同的是,随机投针法是利用概率统计的方法来计算圆周率π的值,开辟了计算圆周率的新途径,因此,“布丰投针实验”成为概率论中很有影响力的一个实验。
程序运行时,计算机上将显示出每次“投针实验”的具体情况,即显示当前总投掷的次数、钢针与平行线相交的次数以及由此计算出来的圆周率的值,当满足所设置的精度要求后,程序就停止运行,当钢针投掷276427次后,所计算出来的圆周率值满足精度要求,此时钢针与平行线相交131984次,圆周率计算结果为3.14159670869196.当然,由于“投掷动作”具有随机性,因此每次“投针实验”的仿真结果不一定相同,为了使计算结果更趋近于π,可以减小误差,取更小的s的值来提高计算的精度,当然仿真实验的时间也会随之变长,
值得说明的是,若将一根钢丝弯成一个圆圈,使其直径恰好等于平行线间的距离a,投掷的结果不外乎有两种:一种是与一条平行线相交,一种是与相邻两条平行线相切,这两种情况都将导致圆圈和平行线有两个交点,因此,如果圆圈扔下的次数为n,那么相交的交点数必为2n。
若将圆圈拉直变成一根长为πa的钢针,显然,这样的钢针被扔下时与平行线相交的情形要比弯成圆圈的情况复杂得多,可能没有交点,还可能有1个交点、2个交点、3个交点、4个交点,由于圆圈和拉直后的钢针的长度相同,根据机会均等的原理可知,当投掷的次数足够多时,两者与平行线组的交点的总数将是一样的,换句话说,当长度为πa的钢针被扔下无穷多次后,它与平行线相交的交点总数也为2n。
從本质上看,上述投针实验运用了离散事件系统仿真,如果按照布丰的做法,进行成千上万次的投针实验和手工计算,势必要消耗大量的人力、物力和财力,而通过运用类比的方法,对实验进行系统建模,在此基础上使用计算机进行系统仿真来解决问题,事情就会变得非常简单,我们只需要根据已掌握的经验与认识,通过对比分析1,运用数学语言、数学符号、数学公式、数学概念等来表达这些量,从多种复杂的因素中抽取主要因素,忽略次要因素,抓住事物的本质特征,运用一系列等式或不等式来表达各个量之间的关系,从而建立起研究对象的数学模型,这有助于掌握复杂事物的内在规律。
20世纪40年代以后,随着电子计算机的出现和发展,人们可以选择适当的软件和编程方法,使用计算机来模拟仿真一些实验和计算,计算机具有计算速度快和存储容量大的优点,采用系统仿真技术可以代替许多实际上非常庞大而复杂的实验,并将实验结果快速地进行处理和分析,上述“投针实验”已经证明了这一点,这说明,在建好数学模型的基础上,运用计算机进行系统仿真,可对研究对象进行快速有效的模拟。
END