等腰直角三角形的角平分线
【题文】
已知等腰△ABC,∠C=90°,AD是∠BAC的平分线,
求证:AC+CD=AB.
【解析】
证法一:过点D作DE⊥AB,易得CD=ED,AC=AE,
△DBE为等腰直角三角形,ED=EB,
所以,AB=AE+EB=AE+DE=AC+CE
证法二:延长AC至点E,使CE=CD,并连接DE,易得AB=AC,所以AB=AE=AC+CE=AC+CE
证法三:延长BC至点E,使CE=BC,连接AE,
则AE=AB(垂直平分线的性质),
易得∠EAD=∠EDA=22.5°+45°=67.5°,
则AB=AE=ED,
所以AB=ED=EC+CD=BC+CD=AC+CD
证法四:过点C作CG⊥AB,垂足为点F,交AD于点E,使得CF=GF,并连接AG,
易得AF=GF=BF=CF,AB=CG,AG=BC=AC,
又得∠CED=∠CDE=∠AEG=∠EAG=67.5°,
所以CE=CD,AG=EG,
所以AB=CG=EG+CE=AC+CD
证法五:延长AC至点E使得CE=CD,并连接BE,
易得△ACD≌△BCE,∠E=∠ADC=∠ABE=67.5°,
则AE=AB,
所以AB=AC+CE=AC+CD
证法六:易得S△ACD:S△ADB=CD:DB=AC:AB,
设AC=CB=1,则AB=
,CD=x,BD=1-x
代入比例式x:(1-x)=1:
,
∴x=
-1,
所以AC+CD=1+
-1=
=AB
赞 (0)