反比例函数的定义

◎ 反比例函数的定义的定义
一般地,函数

(k是常数,k≠0)叫做反比例函数,自变量x的取值范围是x≠0的一切实数,函数值的取值范围也是一切非零实数。
注:
(1)因为分母不能为零,所以反比例函数函数的自变量x不能为零,同样y也不能为零;
(2)由

,所以反比例函数可以写成

的形式,自变量x的次数为-1;
(3)在反比例函数中,两个变量成反比例关系,即

,因此判定两个变量是否成反比例关系,应看是否能写成反比例函数的形式,即两个变量的积是不是一个常数。

表达式:
x是自变量,y是因变量,y是x的函数

◎ 反比例函数的定义的知识扩展
一般地,函数

(k是常数,k≠0)叫做反比例函数,自变量x的取值范围是x≠0的一切实数,函数值的取值范围也是一切非零实数。
注:(1)因为分母不能为零,所以反比例函数函数的自变量x不能为零,同样y也不能为零;
(2)由

,所以反比例函数可以写成

的形式,自变量x的次数为-1;
(3)在反比例函数中,两个变量成反比例关系,即

,因此判定两个变量是否成反比例关系,应看是否能写成反比例函数的形式,即两个变量的积是不是一个常数。

◎ 反比例函数的定义的特性

自变量的取值范围:
①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
②函数y的取值范围也是任意非零实数。

反比例函数性质:
①反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式;
②反比例函数表达式中,常数(也叫比例系数)k≠0是反比例函数定义的一个重要组成部分;
③反比例函数

(k是常数,k≠0)的自变量x的取值范围是不等式0的任意实数,函数值y的取值范围也是非零实数。

◎ 反比例函数的定义的教学目标
1、从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
3、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。
◎ 反比例函数的定义的考试要求
能力要求:知道
课时要求:40
考试频率:选考
分值比重:3
(0)

相关推荐