NCCN-遗传性/家族性结直肠癌高风险评估2017V3(翻译版Part8)

多基因检测(GENE-1)

二代测序可完成多个基因的同时检测,即多基因检测。NCCN专家小组在2016年更新版本时添加了多基因检测的信息。近期推荐的用于遗传性肿瘤的多基因检测已经快速的改变了高危患者及其家庭成员的临床检测方法。多基因检测同时分析了遗传性肿瘤特定表型或多种表型相关的一系列基因,可能包括综合征特异性检测(针对单一综合征如林奇综合征的panels),癌症特异性检测(检测与特定癌症相关的多个基因,如结直肠癌),及复杂癌症panels(如与多个癌症或癌症综合征相关的多个基因检测)。

此外,多基因检测可能只包含与特定癌症相关的高外显基因,或高外显和中等外显基因。与多种癌症类型相关的多个基因的复杂癌症风险panel也是可用的[209]。使用多基因检测进行患者护理的决定应该与检测已知的与特定癌症发展相关的单一基因的基本原理相同。检测的重点是确定一种已知的可进行临床管理的突变;也就是说,病人的个体管理根据突变存在与否而改变。当多个基因可解释患者的临床表征和家族史时,多基因检测可能是最有用的,在这些多种基因突变可能影响病症的情况下,多基因检测可能更有效和/或具有成本效益[209]。多基因panels检测包括与Lynch综合征相关的基因及与结直肠癌相关的高外显基因,可能是最具成本效益且可能检测到单基因检测无法发现的突变[211]。个人或家族史强烈提示遗传易感性,但针对特定综合征的检测结果为阴性的患者也可考虑多基因检测[209,212]。

多基因检测的一个主要困境是数据有限,且缺乏评估基因相关癌症风险程度的明确指南,及如何沟通与管理基因突变携带者的风险[212-214]。由于遗传性疾病的发病率低,导致难以有充足的动力进行研究[213],一些多基因检测包含低或中度外显基因,对此几乎没有可用的数据支持癌症风险分级和风险管理指南[209,214-217]。此外,与这些基因相关的风险可能并非完全由一个基因影响,还可能包括基因/基因或基因/环境相互作用的影响。多基因检测中检出VUS的可能性增加[209,212,214,217-220],可能的比率为17%-38%不等[215,217,218,221]。VUS检出率的增加也为后续遗传咨询增加了难度,但是随着多基因检测使用的增加,预计VUS的检出率也会下降。

多基因检测还有其他问题需要考虑,首先商业检测可能在很多因素上存在显著差异,例如分析基因的数量,检测周期,保险覆盖及其他问题。对于急需结果的患者而言,检测周期太长可能不适用,应仔细选择具体的实验室和多基因检测[209]。其次,在某些案例中多基因检测可能遗漏一些传统单基因检测可发现的突变[209]。此外多个基因突变增加了复杂性,导致难以提出风险管理建议[212]。管理建议应只针对具有临床可行性的已知基因突变,应注意确定不会因为临床管理不确定的发现或由于缺乏证据而被错误解释的发现所造成的过度治疗或过度筛查。

多基因检测是一个新兴且快速发展的领域,但尚且缺乏检测后适当的风险管理的证据,特别是发现中等外显率基因突变或VUS。基于这个原因,NCCN指南建议多基因检测应有遗传学专家参与,并在检测前和检测后提供遗传咨询,这与ASCO的建议一致,并更新到2015年版的遗传检测声明中[222]。应鼓励遗传突变携带者参与临床试验或遗传登记。

以下情况不建议进行多基因检测:1)个体具有已知的家族性突变且没有其他原因进行多基因检测;2)患者家族史强烈提示某一已知的遗传性肿瘤综合征;3)患者诊断为结直肠癌伴微卫星不稳定或至少一个DNA错配修复蛋白表达缺失。这三种情况下,推荐考虑综合征特异性检测。

以下情形可考虑多基因检测(但不限于临床判断):

  • 患者个人病史或家族史满足多个遗传性肿瘤综合征(例如,Lynch综合征和BRCA相关的乳腺癌卵巢癌综合征);

  • 组织学不确定的结肠息肉;

  • 腺瘤性息肉(APC、MUTYH、POLEPOLD1);

  • 家族史不满足已确定的检测指南,但有遗传性肿瘤的倾向并且有合适的panel可用;

  • 家族史有限或未知,但患者对遗传性肿瘤有所担忧;

  • 当一线检测尚无定论时作为二线检测;

新出现的证据已经鉴定了与结直肠癌风险相关的其他基因,专家小组基于已发表的报道评估了证据强度。例如有明确的证据表明在德系犹太人中检测到的APC基因I1370K突变增加了结直肠癌易感性[223-226]。目前出现了导致结直肠癌风险增加的其他基因的相关数据,尽管数据可能尚不健全。例如GREM1单核苷酸多态性(SNP,rs16969681)、POLEPOLD1[229-232]都显示与结直肠癌风险增加相关[227,228]。在对266例与先证者不相关的息肉病患者或符合Amsterdam标准的患者进行分析,其中1.5%的患者发生POLE突变[233]。对858名西班牙裔早发性或家族性结直肠癌或结肠息肉患者进行分析,其中1名患者发生POLE突变[231],CHEK2MSH3基因突变也与结直肠癌风险增加相关[234-239]。回顾性Meta分析显示非选择性结直肠癌和家族性结直肠癌都与CHEK2的1100delC和I157T变异相关[237,239]。蛋白编码基因GALNT12 [240-242]、ATM基因杂合突变[243]、DNA RECQL解螺旋基因BLM都能增加结直肠癌风险[244-246];AXIN2NTHL1突变与息肉和牙齿畸形相关[246]。有数据显示RPS20突变可能与结直肠癌风险增加相关,但需要更多数据支持这种关联[255]。

虽然一些研究已经表明这些基因突变与结直肠癌潜在风险的关联,但包含这些基因用于临床检测(例如多基因panel的一部分)的价值尚不明确。尽管如此,专家组认识到检测公司提供包含这些基因的panel,患者也正在接受检测,并可能需要后续筛查与监测的相关指南。因此,尽管专家组建议推荐多基因检测需谨慎,但关于结果管理的指导将在下面讨论。

支持筛查和监测的证据是有限的,但专家组已经有条件地为多基因panels检测提出了一种常用基因的推荐框架(GENE-7)。对GERM1、POLD1、POLE、AXIN2、NTHL1和/或MSH 3突变携带者的筛查建议如下(GENE-7):25-30岁开始结肠镜筛查,如果阴性,每2-3年接受一次结肠镜随访。如果发现息肉,每1-2年进行一次结肠镜筛查;如果息肉负担难以通过结肠镜控制,可考虑手术。如果可行,可提供手术评估。专家组认为支持GREM,POLD,POLE,AXIN2,NTHL1和/或MSH3监测建议的证据正在形成。因此,在患者个人意愿和可能出现的新知识背景下实施最终的结肠镜检查方案时应谨慎。

GREM,POLD,POLE,AXIN2,NTHL1MSH3突变的监测建议一样,支持APC I1307K和CHEK2突变的筛查方案的数据也在不断形成。因此,专家组建议在患者个人意愿和可能出现的新知识背景下实施最终的结肠镜检查方案时应谨慎。对发生APC I1307K和CHEK2突变的结直肠癌患者,专家组建议根据NCCN结肠癌指南和NCCN直肠癌指南进行结肠镜检查。对于未患结直肠癌但一级亲属患结直肠癌的APC I1307K和CHEK2突变携带者,研究小组建议40岁时开始每5年进行一次结肠镜筛查或在一级亲属结直肠癌诊断年龄前10年开始(GENE-7 )。对于一级亲属和本人均未患结直肠癌的携带者,专家组建议从40岁开始每5年进行一次结肠镜检查(GENE-7)。

总体而言,随着具有临床意义的结直肠癌风险相关的基因数据出现,专家组预计这些筛查建议也会有所发展。

文献:

209. Hall MJ, Forman AD, Pilarski R, et al.Gene panel testing for inherited cancer risk. J Natl Compr Canc Netw2014;12:1339-1346.

210. Gallego CJ, Shirts BH, Bennette CS, etal. Next-Generation Sequencing Panels for the Diagnosis of Colorectal Cancerand Polyposis Syndromes: A Cost-Effectiveness Analysis. J Clin Oncol2015;33:2084-2091.

211. Walsh T, Casadei S, Coats KH, et al.Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high riskof breast cancer. JAMA 2006;295:1379-1388.

212. Walsh T, Lee MK, Casadei S, et al.Detection of inherited mutations for breast and ovarian cancer using genomiccapture and massively parallel sequencing. Proc Natl Acad Sci U S A2010;107:12629-12633.

213. Bombard Y, Bach PB, Offit K.Translating genomics in cancer care. J Natl Compr Canc Netw 2013;11:1343-1353.

214. Rainville IR, Rana HQ. Next-generationsequencing for inherited breast cancer risk: counseling through the complexity.Curr Oncol Rep 2014;16:371.

215. Cragun D, Radford C, Dolinsky JS, etal. Panel-based testing for inherited colorectal cancer: a descriptive study ofclinical testing performed by a US laboratory. Clin Genet 2014;86:510-520.

216. LaDuca H, Stuenkel AJ, Dolinsky JS, etal. Utilization of multigene panels in hereditary cancer predispositiontesting: analysis of more than 2,000 patients. Genet Med 2014;16:830-837.

217. Mauer CB, Pirzadeh-Miller SM, RobinsonLD, Euhus DM. The integration of next-generation sequencing panels in theclinical cancer genetics practice: an institutional experience. Genet Med2014;16:407-412.

218. Kapoor NS, Curcio LD, Blakemore CA, etal. Multigene panel testing detects equal rates of pathogenic BRCA1/2 mutationsand has a higher diagnostic yield compared to limited BRCA1/2 analysis alone inpatients at risk for hereditary breast cancer. Ann Surg Oncol2015;22:3282-3288.

219. Kurian AW, Hare EE, Mills MA, et al.Clinical Evaluation of a Multiple-Gene Sequencing Panel for Hereditary CancerRisk Assessment. Journal of Clinical Oncology 2014;32:2001-2009.

220. Tung N, Battelli C, Allen B, et al.Frequency of mutations in individuals with breast cancer referred for BRCA1 andBRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer2015;121:25-33.

221. Yurgelun MB, Allen B, Kaldate RR, et al.Identification of a Variety of Mutations in Cancer Predisposition Genes inPatients With Suspected Lynch Syndrome. Gastroenterology2015;149:604-613.e620.

222. Robson ME, Bradbury AR, Arun B, et al.American Society of Clinical Oncology Policy statement update: genetic andgenomic testing for cancer susceptibility. J Clin Oncol 2015;33:3660-3667.

223. Boursi B, Sella T, Liberman E, et al.The APC p.I1307K polymorphism is a significant risk factor for CRC in averagerisk Ashkenazi Jews. Eur J Cancer 2013;49:3680-3685.

224. Gryfe R, Di Nicola N, Lal G, et al.Inherited colorectal polyposis and cancer risk of the APC I1307K polymorphism.Am J Hum Genet 1999;64:378-384.

225. Locker GY, Kaul K, Weinberg DS, et al.The I1307K APC polymorphism in Ashkenazi Jews with colorectal cancer: clinicaland pathologic features. Cancer Genet Cytogenet 2006;169:33-38.

226. Liang J, Lin C, Hu F, et al. APCpolymorphisms and the risk of colorectal neoplasia: a HuGE review andmeta-analysis. Am J Epidemiol 2013;177:1169-1179.

227. Jaeger E, Leedham S, Lewis A, et al.Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplicationthat leads to increased and ectopic expression of the BMP antagonist GREM1. NatGenet 2012;44:699-703.

228. Lewis A, Freeman-Mills L, de laCalle-Mustienes E, et al. A polymorphic enhancer near GREM1 influences bowelcancer risk through differential CDX2 and TCF7L2 binding. Cell Rep2014;8:983-990.

229. Bellido F, Pineda M, Aiza G, et al.POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/orpolyposis: review of reported cases and recommendations for genetic testing andsurveillance. Genet Med 2016;18:325-332.

230. Palles C, Cazier JB, Howarth KM, etal. Germline mutations affecting the proofreading domains of POLE and POLD1predispose to colorectal adenomas and carcinomas. Nat Genet2013;45:136-144.

231. Valle L, Hernandez-Illan E, Bellido F,et al. New insights into POLE and POLD1 germline mutations in familialcolorectal cancer and polyposis. Hum Mol Genet 2014;23:3506-3512.

232. Elsayed FA, Kets CM, Ruano D, et al.Germline variants in POLE are associated with early onset mismatch repairdeficient colorectal cancer. Eur J Hum Genet 2015;23:1080-1084.

233. Spier I, Holzapfel S, Altmuller J, etal. Frequency and phenotypic spectrum of germline mutations in POLE and sevenother polymerase genes in 266 patients with colorectal adenomas and carcinomas.Int J Cancer 2015;137:320-331.

234. Adam R, Spier I, Zhao B, et al. ExomeSequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtypeof Colorectal Adenomatous Polyposis. Am J Hum Genet 2016;99:337-351.

235. Berndt SI, Platz EA, Fallin MD, et al.Mismatch repair polymorphisms and the risk of colorectal cancer. Int J Cancer2007;120:1548-1554.

236. Gronwald J, Cybulski C, Piesiak W, etal. Cancer risks in firstdegree relatives of CHEK2 mutation carriers: effectsof mutation type and cancer site in proband. Br J Cancer2009;100:1508-1512.

237. Liu C, Wang QS, Wang YJ. The CHEK2I157T variant and colorectal cancer susceptibility: a systematic review andmeta-analysis. Asian Pac J Cancer Prev 2012;13:2051-2055.

238. Orimo H, Nakajima E, Yamamoto M, etal. Association between single nucleotide polymorphisms in the hMSH3 gene andsporadic colon cancer with microsatellite instability. J Hum Genet2000;45:228-230.

239. Xiang HP, Geng XP, Ge WW, Li H.Meta-analysis of CHEK2 1100delC variant and colorectal cancer susceptibility.Eur J Cancer 2011;47:2546-2551.

240. Guda K, Moinova H, He J, et al.Inactivating germ-line and somatic mutations in polypeptideN-acetylgalactosaminyltransferase 12 in human colon cancers. Proc Natl Acad SciU S A 2009;106:12921-12925.

241. Clarke E, Green RC, Green JS, et al.Inherited deleterious variants in GALNT12 are associated with CRCsusceptibility. Hum Mutat 2012;33:1056-1058.

242. Segui N, Pineda M, Navarro M, et al.GALNT12 is not a major contributor of familial colorectal cancer type X. HumMutat 2014;35:50-52.

243. Thompson D, Duedal S, Kirner J, et al.Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl CancerInst 2005;97:813-822.

244. Baris HN, Kedar I, Halpern GJ, et al.Prevalence of breast and colorectal cancer in Ashkenazi Jewish carriers ofFanconi anemia and Bloom syndrome. Isr Med Assoc J 2007;9:847-850.

245. Cleary SP, Zhang W, Di Nicola N, etal. Heterozygosity for the BLM(Ash) mutation and cancer risk. Cancer Res2003;63:1769-1771.

246. Laitman Y, Boker-Keinan L, BerkenstadtM, et al. The risk for developing cancer in Israeli ATM, BLM, and FANCCheterozygous mutation carriers. Cancer Genet 2016;209:70-74.

247. Broderick P, Bagratuni T,Vijayakrishnan J, et al. Evaluation of NTHL1, NEIL1, NEIL2, MPG, TDG, UNG andSMUG1 genes in familial colorectal cancer predisposition. BMC Cancer2006;6:243.

248. Lammi L, Arte S, Somer M, et al.Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectalcancer. Am J Hum Genet 2004;74:1043-1050.

249. Lejeune S, Guillemot F, Triboulet JP,et al. Low frequency of AXIN2 mutations and high frequency of MUTYH mutationsin patients with multiple polyposis. Hum Mutat 2006;27:1064.

250. Marvin ML, Mazzoni SM, Herron CM, etal. AXIN2-associated autosomal dominant ectodermal dysplasia and neoplasticsyndrome. Am J Med Genet A 2011;155a:898-902.

251. Rivera B, Castellsague E, Bah I, etal. Biallelic NTHL1 Mutations in a Woman with Multiple Primary Tumors. N Engl JMed 2015;373:1985-1986.

252. Rivera B, Perea J, Sanchez E, et al. Anovel AXIN2 germline variant associated with attenuated FAP without signs ofoligondontia or ectodermal dysplasia. Eur J Hum Genet 2014;22:423-426.

253. Weren RD, Ligtenberg MJ, Kets CM, etal. A germline homozygous mutation in the base-excision repair gene NTHL1causes adenomatous polyposis and colorectal cancer. Nat Genet2015;47:668-671.

254. Wong S, Liu H, Bai B, et al. Novelmissense mutations in the AXIN2 gene associated with non-syndromic oligodontia.Arch Oral Biol 2014;59:349-353.

255. Nieminen TT, O'Donohue MF, Wu Y, etal. Germline mutation of RPS20, encoding a ribosomal protein, causespredisposition to hereditary nonpolyposis colorectal carcinoma without DNAmismatch repair deficiency. Gastroenterology 2014;147:595-5

(0)

相关推荐