自己动手做一个识别手写数字的web应用02
继续上文。
01
再次进入docker容器
接着上一篇文章,我们继续使用上次新建好的容器,可以终端输入 :
docker ps -a
如上图,找到上次run的容器,我这边是容器名(NAMES)为suspicious_cori,启动它,可以终端输入:
docker start suspicious_cori
然后,终端再输入:
docker exec -i -t suspicious_cori bash
即可在容器中开启一个交互模式的终端。
终端输入
jupyter notebook
新建一个notebook
02
加载训练好的模型
加载上一篇训练好的模型,在新建的notebook里输入:
from keras.models import model_from_json
model=model_from_json(open('my_model_architecture.json').read())
model.load_weights('my_model_weights.h5')
03
读取需要识别的手写字图片
引入用于读取图片的库:
import matplotlib.image as mpimg
读取位于kerasStudy目录下的图片:
img = mpimg.imread('test.png')
'''
matplotlib只支持PNG图像,读取和代码处于同一目录下的 test.png ,注意,读取后的img 就已经是一个 np.array 了,并且已经归一化处理。
'''
'''
上文的png图片是单通道图片(灰度),如果test.png是rgb通道的图片,可以rgb2gray进行转化,代码如下:
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])
img = rgb2gray(img)
'''
关于图片的通道,我们可以在photoshop里直观的查看:
先查看下读取的图片数组维度:
print(img.shape)
输出是(28, 28)
转化成正确的输入格式:
img = img.reshape(1, 784)
打印出来看看:
print(img.shape)
输出是(1, 784)
04
识别的手写字图片
输入:
pre=model.predict_classes(img)
打印出来即可:
print(pre)
识别出来是6:
1/1 [==============================] - 0s[6]
至此,你已经学会了从训练模型到使用模型进行识别任务的全过程啦。
有兴趣可以试着替换其他的手写字图片进行识别看看。
当然也可以写个后端服务,部署成web应用。