中国最有钱的天文爱好者小马哥给中国天文的最新贡献来了!

刚从国家天文台的老同学处听来一个小道消息,说他们跟腾讯合作,使用腾讯的人工智能算法和GPU算力,提升了在FAST望远镜(中国天眼)数据中搜寻脉冲星的效率,并且已经藉此发现了新的脉冲星。

腾讯使用的具体方法目前还没有公布,具体发现的是什么样的脉冲星也要等论文发了才知道,不过这不妨碍我们根据已经历年来已经公开的材料,做一番猜测。

在此之前,我会先简单回顾脉冲星研究的意义,以及简单介绍脉冲星的搜索方法。如果对这些背景已经有所了解,就可以直接跳到第三部分,看看人工智能是如何应用在脉冲星搜索中的。

脉冲星研究的意义

脉冲星是1967年,当时正在剑桥大学读研究生的约瑟琳·贝尔女士发现的。虽然已经过去了50多年,脉冲星仍然是一个不断给人惊喜的研究领域。

它一被发现,首先就证实了一个遥远的猜测:1934年,巴德和兹维基在中子刚刚发现两年之际,提出可能存在一种完全由中子构成的天体——中子星。

左:兹维基,右:贝尔

而发出极短周期(通常小于1秒)脉冲的这种新天体,提示我们它就是「中子星」这种此前仅仅是猜想的致密物体。

中子星的质量比太阳还重,而直径只有十几公里。相当于在北京三环以内集中了几十万个地球质量。于是一个首当其冲的问题就是,这么致密的物质组成的天体,其上物质的状态和性质是怎样的?

这个问题的答案就藏在脉冲星的“心电图”中。长期监测我们会发现,随着转动能量的消耗,脉冲星的自转周期逐渐减慢。但是偶尔,它的自转会突然有一个小幅加速(“glitch”)——这种脉冲星“心率”的突变,应当起源于脉冲星地质结构的突变,也就是脉冲星上的“地震”。

脉冲星周期衰减和突变“glitch”(示意图,glitch的幅度极大夸张)

就像地球物理学家可以通过地震波的传播摸清地球核、幔、壳的结构,天文学家也可以通过监测脉冲星上的地震,研究极端致密物态组成的中子星的结构。

中子星结构的一种模型

除了glitch的时候以外,脉冲星的周期非常稳定,堪比原子钟。于是脉冲星研究的另一个用途,是利用这种宇宙中天然存在的精密时钟,对广义相对论进行验证。

天文学家对一对儿在1974年发现的毫秒脉冲星进行长期监测,发现其相互绕转周期加速的趋势,完全符合广义相对论的预言——它们之间不断相互接近,正是由于两个致密天体绕转时搅动时空,发出引力波,不断带走转动能量。这是人类第一次获得引力波存在的间接证据。

双毫秒脉冲星PSR B1913 16的轨道衰减

将来,脉冲星还将以另一种方式为引力波研究做出贡献:当宇宙中某个地方发生双黑洞并合之类的引力波事件,引力波如海啸般向外扩散、扫过若干脉冲星,我们原则上可以通过监测这些脉冲星的周期变化,探知这次引力波事件的存在——这一方法,叫做“脉冲星计时阵列”。

脉冲星阵列还有另一个用途:在未来的星际旅行中,脉冲星可以充当“星际GPS”,为星际飞船提供导航所需的参考信号。

脉冲星阵列用于星际导航(示意图)

脉冲星的搜索方法

脉冲星用处很多,但总要先找到它们,才谈得上如何利用。

对于早期发现的那些亮脉冲星,它们辐射强度的周期性变化,用肉眼就能直接看出:

贝尔发现的第一颗脉冲星CP 1919

但对于大部分脉冲星而言,单个脉冲的强度很弱,几乎完全埋没在噪声中,只有通过按照周期折叠,让噪声彼此抵消,才能增强信噪比,把脉冲形状“露出来”。

按周期折叠(示意图)

但是问题来了,对于尚未发现的脉冲星,怎么知道它周期是多少、又该按什么周期折叠呢?

有一个办法,就是傅立叶变换。通过变换,可以计算出数据有哪些周期性信号。

下面这栏中那些分立的峰值对应一系列可能存在于时间序列中的周期信号

对于射电天文观测,还有另外一个复杂性。脉冲星跟我们之间,可能充斥着非常复杂的电离态星云。

芬兰摄影师 J-P Metsavainio 拍摄的天鹅座窄带影像,示意银河系星际空间电离气体的分布

脉冲星的信号经过这些星云时,会跟其中的自由电子发生相互作用。不同频段的信号受到的影响不同:比较低频的,会受到比较强的“阻滞”,晚一些到达观测者;比较高频的,会早一些到达观测者。

就像光通过棱镜时,由于不同颜色的光在玻璃中光速不同、折射率不同,会产生的色散现象一样,电磁波通过星际介质时的这种效应,也被称作“色散”。

左边是不同频率信号被“色散”之后的结果:高频先到达,低频后到达(横轴是相位,可以理解为到达时间;纵轴是频率)

对于未知的脉冲星,我们是无法预知其色散的。我们只能大致估计出银河系内脉冲星的色散的数值范围,然后在这个范围内以一定间隔取值,对数据进行“盲”消色散。盲消色散之后的结果,才能进行傅立叶变换及按周期折叠。

显然,在取值范围内众多可能的色散中,正确的那个色散可以给出最好的信噪比;而越离谱的盲猜值,信噪比就越差:

横轴是色散量,纵轴是信噪比

使用脉冲星搜寻程序PRESTO,我们可以对脉冲星巡天的原始数据进行盲消色散和折叠处理,得到一系列(大量)这样的脉冲星候选体分析图表:

原则上观察这样的脉冲星候选体分析图表,天文学家就可以判断出一组信号是否来自脉冲星;以及如果是脉冲星的话,它的周期、色散量等各项参数是多少。

人工智能在脉冲星搜索中的应用

下面问题来了。PRESTO产生了一大堆这样的图,天文学家就算再熟练,一秒看一张,也看不过来呀!

毕竟脉冲星巡天是FAST望远镜的重要任务之一,而FAST每天可以产生500TB的数据,算下来每周都会产生三千万张脉冲星候选体的分析图表。

你想想如果你导师让你这个小博士生一周看三千万张图,100个你不吃不喝啥也不干也看不过来呀。

咋办呢?笨办法,雇一帮热爱科学的高中生代劳,美名其曰公众科学:

Pulsar Search Collaboratory 暑校合影

美国 Pulsar Search Collaboratory 项目就是这么干的。

这样做不是不行,顺便搞搞中学生天文教育也是好事。但人一多,标准就不好把控。而且人眼的特征识别能力虽然强,对于特别弱的信号,仍然会有遗漏和误判。

于是天文学家开始求助于人工智能。

大而化之,人工智能在脉冲星搜索中的应用又分两种[1]

一种,是天文学家先用PRESTO等软件把脉冲星候选体的特征数据提取好,诸如周期、色散量、信噪比,再如脉冲在整个周期中占的比例(占空比)、脉冲的数量和形状、是否由于身处双星系统而有周期性多普勒效应,等等。

接下来,把这些参数组合喂给神经网络:给机器提供一些已知脉冲星的参数进行深度学习,然后用训练好的模型去分析海量未知数据。

由于前一种方法中,提取参数这一步可能引入误差,还有一种更“懒惰”而有效的方法:直接把PRESTO产生的那几张图(前一节末图中几个红框标记的)喂给AI,让AI自己进行画面特征提取。

这次跟国家天文台中国天眼团队合作的是腾讯优图实验室,这是一个聚焦计算机视觉、专注图像处理的团队,因此我有理由相信,他们采用的是后一种方案。

另外据本人独家采访参与该工作的研究人员,腾讯云还提供了强大的GPU算力,有效加速了消色散和折叠过程。面对FAST的海量数据,强大的算力显然也是天文学家必不可少的重要工具。

在腾讯的AI算法和GPU算力加持下,3000万张图,只需要3天时间就可以分析完成,确保了FAST脉冲星巡天数据可以得到及时有效的处理。

有这样的工业界先进技术加持,天文学家再也不怕数据处理不完啦。

参考

  1. ^脉冲星候选样本分类方法综述

  2. http://jdse.bit.edu.cn/sktcxb/html/sktcxbcn/2018/3/20180301.htm

(0)

相关推荐