三角形有关的几何综合题

以微课堂高中版

奥数国家级教练与四位高中特级教师联手打造,高中精品微课堂。
35篇原创内容
公众号
典型例题分析1:
如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.
(1)求证:MN⊥CE;
(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.
典型例题分析2:
已知,如图,四边形ABCD是边长为2的菱形,E、F分别是AB、AD的中点,连EF,将△FAE绕点F旋转180°得△FDM.
(1)求证:EF⊥AC.
(2)若∠B=60°,求以E、M、C为顶点的三角形的面积.
典型例题分析3:
两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为和位置关系为;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
考点分析:
旋转的性质;全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.
题干分析:
(1)证AD=BE,根据三角形的中位线推出FH=AD/2,FH∥AD,FG=BE/2,FG∥BE,即可推出答案;
(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;
(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.
以微课堂

奥数国家级教练与四名特级教师联手打造,初中数学精品微课堂。
271篇原创内容
公众号
以微课堂初中版

奥数国家级教练与四名特级教师联手打造,初中生数学课堂。
公众号
以微课堂小学版

小学微课与各科学习资料
公众号

来源网络,侵删。

温馨提示

(0)

相关推荐