软体机器人进化论:温柔又害怕!
大数据产业创新服务媒体
——聚焦数据 · 改变商业
30多年前,剪刀手爱德华那句“如果我没有刀,我就不能保护你。如果我有刀,我就不能拥抱你。”感动无数人。几十年后,“我长成这样,是为了让人看起来更想拥抱。”的大白又骗走了我们一票眼泪。
纵观机器人发展史,影视作品里机器人的温情满满总离不开现实世界机器人发展格局的变化,从自动机械装置到软体机器人,科技的背后多了份温柔,机器人开始走向“柔软”。
从公元前4世纪,古希腊哲学家亚里士多德对壁虎高明的爬行能力“大惑不解”后,其高超的攀爬能力便成为科研人员的重点研究对象。
而后通过实验发现,壁虎每只脚上都有数百万根细毛,这些脚毛除了能够插入最平整表面中以外,其大小和顶尖的形状也强有力的增大了壁虎攀爬时的粘附力。正是这种超强粘附力,让壁虎能够在一块垂直竖立的抛光玻璃表面以每秒一米的速度向上高速攀爬,并且“只靠一个指头”就能够把整个身体稳当地悬在墙壁或者倒挂在天花板上。
壁虎的“绝技”加上蚯蚓、章鱼、水母等软体动物身体的灵活性为科学家们制造更敏捷、危险性小、多功能的软体机器人带来了无限的灵感。一场科技源于生活,而服务于生活的故事就此拉开序幕。
1989年,日本冈山大学软体机器人实验室完成了早期的部分软体机器人制造,即小型柔性机械手。该机械手采用白色硅胶材料浇筑而成,利用气体压缩原理进行机械驱动,具有前屈、后伸、内收、外展、旋内、旋外、环转7个自由活动度,与人手相似,它也能够通过控制抓取力度完成易碎物品的基本抓持动作。柔性机械手的成功也代表着采用硅胶材料和气动驱动模式的局部软体机器人的首次“变现”。
2007年,美国国防部高级研究计划局综合应用化学、材料学与机器人科学,研制出了化学机器人ChemBot。其超弹性外表皮肤由许多细胞形状的小室构成。平常状态下,可以通过对其皮肤的各细胞小室进行气体填充,引起ChemBot膨胀,改变ChemBot的整体外形。
必要时刻,就可以应用“变形”特点将ChemBot挤入人类无法进入的各种狭小空间,替代人类完成各项作业。ChemBot的出现成功开辟了软体机器人在勘探领域的运用,但是它离传统概念上能随意运动的机器人还相差甚远。
2011年,美国哈佛大学以化学家乔治·怀特塞兹(George M. Whitesides)教授为主的研究小组从乌贼、海星以及其它无脊椎动物获得启发,研制了一种有四只“脚”的小型软体机器人,通过对“脚”的应用,可以让这种机器人像蠕虫一样在非常狭窄的空间里进行活动。
这种机器人,结合了前几代软体机器人的特点,不仅可以准确地抓取形态各异的水果,筛选食物,还可以持握含刺的仙人球。成功做到了降低人类作业危险性的同时完全不损害所抓握的物体。
而后的几年,软体机器人的外表形态趋于稳定。2014年,美国哈佛大学又自主研制了一款仿海星的软体机器人,此机器人由高弹性硅胶材料构成,并使用电动空气压缩机提供动力。通过材料和动力的升级,海星软体机器人可以完成长达两小时的自主运行,能够承受高强度冲击、碾压等作用,甚至具备在严寒气候、大风、水坑、火焰炙烤等恶劣条件下工作的能力。
无独有偶,同年,我国科学家对软体机器人的思考也开始“奔现”。SRT软体机器人CEO高少龙,在其之前任职的北京航空航天大学成立了“仿生软体机器人实验室”,中国在这场机器人变革中牢牢地跟上了软体机器人发展的快车。
2015年,意大利BioRobotics研究所设计出了一款仿生章鱼,该软体机器人在成型材料及驱动方式上进行突破,利用硅胶包裹网状的SMA结构进行耦合变形,获得触手抓取的动力,而机器人触手的爬行、游动则由曲柄摇杆机构带动。成型材料及驱动方式的近一步突破为全软体机器人的产生带来了催化剂。
2016年,美国哈佛大学仿生机器人实验室Wehner团队自主研发的软体机器人Octobot成功发表于《Nature》杂志,再次引发学术界广泛关注。Octobot是世界上首个公认的全软体机器人,其基体由3D打印技术制造而成,通过化学反应提供所需动力,采用流体驱动的行进方式,无需电力便可自主运动,其大小如同成年人手掌,材料成本还不到3美元。Octobot全软体机器人的到来为软体机器人发展带来了跨时代的突破。
仅隔1年,中国的“章鱼妖精”出现了,北京航空航天大学王田苗、文力团队与德国自动化技术商Festo合作完成了OctopusGripper的研制,这是中国软体机器人领域发展的又一次突破。
2018年,美国哈佛Connor Walsh教授所研发出可穿戴的康复软体机器人,研发该机器人的目的是为了帮助残疾人和行动不便的人康复或是作为辅助设备长期穿戴。康复软体机器人的出现也成功表明了软体机器人涉足的领域在逐渐扩大。
同年,中国CCTV10频道播出了《创新一线——中国软体机器人》专题,报道中对“仿生䲟鱼软体吸盘机器人”、“折纸结构”、“柔性夹爪软体机器人”、“水凝胶”和“章鱼手软体机器人”进行了系统介绍,这档节目堪称迄今为止世界上最深入浅出的软体机器人综合介绍。
而后软体机器人产业成爆发式增长,全球主要软体机器人制造商有Cyberdyne、Soft Robotics、RightHand Robotics、Parker Hannifin、SRT北京软体机器人、Myomo、Bionik Laboratories和Panasonic等。
据相关报道显示,2019年全球前十大软体机器人厂商占据了49%的机器人市场份额,其中Cyberdyne是全球最大的软体机器人厂商,市场占比为9.61%。不同类型的软体机器人中,外骨骼收入市场份额占比最高,在2019年达到了60.35%,软抓手机器人其次,占比为39.65%。
全球软体机器人的生产集中在美国、欧洲和日本,三个地区2019年的全球收入份额依次为45.80%、24.33%和21.80%。而消费则以中国、美国、欧洲和日本为主,2019年,中国软体机器人销售额的全球占比达到31.84%,排名第一。
巨大市场的催生下,2020年,软体机器人进入了百花齐放模式,可运动的、能变形的、会变色的,科研人员们孜孜不倦地研制出了属于各行各业的多功能微型软体机器人。
今年3月4日,不枉我们国家的大力投入和多年钻研,浙江大学航空航天学院李铁风教授团队联合之江实验室,成功研制出一款仿生软体智能机器人,并首次在世界最深的马里亚纳海沟实现了软体机器人深海自主游动。其相关论文更是刊登于世界知名学术刊物《Nature》杂志上。
该研究成果率先提出机电系统软硬共融的压力适应原理,成功研制了无需耐压外壳的仿生软体智能机器人,首次实现了在万米深海自带能源软体人工肌肉驱控和软体机器人深海自主游动。这种环境自动适应和智能系统不仅为软体机器人开启了新篇章,更将为深海探索科考、环境监测与资源勘探提供解决方案,直接为复杂环境与任务下机器人及智能系统设计提供新思路。
其实相比于传统刚性机器人,软体机器人柔软的机体使其可以更高效、安全地与人类和自然界进行交互。在地震、洪水等自然灾害发生时,抑或遇到悬崖、岩洞、海底等复杂未知环境下,软体机器人完全可以利用自身柔软、弯曲程度高、自由度大等优势很好地适应不同的复杂环境,承担起勘探、救援、侦查等工作。
在医疗和手术应用方面,软机器人更是天生具有与生物体的自然组织兼容的优势。哈佛大学的软体机器人手套利用软体致动器组成的模压弹性腔与纤维增强,诱导特定的弯曲,能够使肌肉或者神经受损的患者独立把握物体。步态协助软机器人可以覆盖全身,它可以像正常的衣服一样佩戴,最大限度减少与穿着者的相互干涉,对穿戴者起到辅助作用。
微创外科手术软体机器人可以依靠自身的优势特性,有效地辅助外科医生的实际操作,使得手术更加精确、伤口更小、流血更少,术后恢复所需时间更短。
所以从“爱德华”到“大白”,软体机器人还能走向何方?软体机器人的到来到底是机器人时代的新开局,还是人类研发机器人史的新转折?值得我们思考与期待。
文:达尼亚 / 数据猿
联系数据猿
北京区负责人:Summer
电话:18500447861(微信)