皮亚诺曲线,盘点数学界的那些神奇定论,是真的吗?

钢琴曲线是一条曲线序列的极限,是一条能填满正方形的曲线。钢琴曲线是一种可理解的曲线,在数学上有一定的应用,因为一般情况下一维线不能填充二维点阵,而钢琴曲线解决了这个问题,这说明我们对维数的理解是有缺陷的,有必要重新审视维的定义。这就是分形几何问题。在分形几何中,维数可以称为分形维数。这一结论的证实,使我们不得不重新认识维数在数学中的应用,这也是数学知识的魔力所在。除了钢琴曲线,数学中还有许多神奇的结论。这些结论的存在解释了数学知识的魔力。本文将对其进行详细介绍。

皮亚诺曲线

数学定理的神奇之处

学过数学的人都应该知道,数学对某些人来说是很神奇的,但它很神奇,因为很多人不能理解数学的魔力,但数学的魅力是不可磨灭的,而对于一些数学曲线,根据具体的数学规律进行微积分,可以很好地表现出神奇的曲线特征。例如,双曲曲线、钢琴曲线、阿基米德螺旋等都是数学定理计算中的特征曲线,这也是数学定理的神奇之处。

皮亚诺曲线的观点所在

1890年,意大利数学家Piano(PeanoG)发明了一条叫做钢琴曲线的平方曲线。钢琴详细描述了区间[0,1]上的点与正方形上的点之间的对应关系。实际上,正方形的这些点可以指定两个连续函数x≤f(T)和y≤g(T),对于t∈[0,1],这样x和y就得到了属于单位平方的所有值。后来,艾伯特做出了这条曲线。

皮亚诺曲线

“1872年,康托在一篇文章中,用一章的篇幅专门讨论实数问题,特别是无理数问题。他为自己提出了一个目标,在不预先假定无理数存在的条件下,建立一个令人满意的无理数理论。显然,全体的有理数集合为此提供了一个基础。康托用有理数的无穷序列来定义无理数及它们之间的顺序关系。从集合论的观点来看,由于数的序列对应的是数的集合,而不是数元素本身,即使形如只有一个元素的序列对应的也应该是一个数的集合。上面对有理数的定义显然构造了一个包含自指的集合:数a等于一个集合,这个集合中有一个元素,就是数a本身。这样的集合包含了罗素悖论。

有一点需要明确一下,就是无穷序列的构造过程以及对无穷序列取极限的过程的关系。我们已经知道[0,1]区间中有理数有可数无穷多个,可以用一个递归的无穷过程来产生这些有理数;而[0,1]区间中的无理数都是有理数集合的极限点。但有理数集和无理数集显然是不一样的。这就是说,构造有理数集的无穷过程并不包括取极限的过程,不能认为取极限的过程一定包含在无穷过程中。否则,按第一节的论述,对无理数的定义将包含罗素悖论。事实上,许多宣称找到了实数可数证据的例子都是犯了认为无穷过程一定包含取极限过程的错误。

皮亚诺曲线

另外,可以用反证法证明,希尔伯特曲线并没有建立一种从曲线到平面的一一对应关系。假设曲线的坐标区间为[0,1](即假设曲线的长度为1),并对于正方形中位线y轴上的某一点p,有曲线上的数x属于[0,1]映射到p点。由于希尔伯特曲线是左右对称的,则立即可以得到数(1-x)也映射到p点。又由于这种映射是一一映射,所以有x=1-x=1/2,即与1/2对应的是y轴上的一条线段,这与前面的一一对应假设矛盾。

这种观点指出,在康托用有理数的基本序列去定义实数中,实数域中的一个有理数a按定义等于序列,这实际上构造了一个包含自指的集合:数a等于一个集合,这个集合中有一个元素,就是数a本身。这样的集合包含了罗素悖论。本文还分析了皮亚诺曲线等一维到二维映射的例子,指出它们实际上也包含了上述悖论。

盘点数学上的其他曲线及定理

上面也已经说到了数学上存在的一些数学定理,这些定理的存在也证明了数学的神奇所在,并且数学定理在很多方面都有非常广泛的应用,涵盖了人类生活的方方面面,比如说在宇宙探索中,就需要用到大量的数学定理去进行演算,并且通过这些演算来进行结果的论证,再比如说在某些生活中存在的物件,都是通过数学的定理来进行设计的,因为只有根据科学的设计才能制造出非常合适的产品。

阿基米德螺旋曲线

阿基米德螺旋曲线

阿基米德螺线,亦称“等速螺线”。当一点P沿动射线OP以等速率运动的同时,这射线又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。它的极坐标方程为:r=aθ。这种螺线的每条臂的距离永远相等于2πa。

斐波那契螺旋线

斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案。是自然界最完美的经典黄金比例。斐波那契螺旋线,以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线。斐波那契数列,又称为黄金分割数列。在数学上,斐波那契数列是以递归的方法来定义。

渐开线

渐开线

渐伸线(或称渐开线)和渐屈线是曲线的微分几何上互为表里的概念。若曲线A是曲线B的渐伸线,曲线B是曲线A的渐屈线。在曲线上只有一条渐屈线。)直线在圆上纯滚动时,直线上一点K的轨迹称为该圆的渐开线,该圆称为渐开线的基圆,直线称为渐开线的发生线。渐开线的形状仅取决于基圆的大小,基圆越小,渐开线越弯曲;基圆越大,渐开线越平直;基圆为无穷大时,渐开线为斜直线。

数学摆线

摆线是数学中众多的迷人曲线之一.它是这样定义的:一个圆沿一直线缓慢地滚动,则圆上一固定点所经过的轨迹称为摆线,圆上定点的初始位置为坐标原点,定直线为x轴。当圆滚动j角以后,圆上定点从O点位置到达P点位置。当圆滚动一周,即j从O变动2π时,动圆上定点描画出摆线的第一拱。再向前滚动一周,动圆上定点描画出第二拱,继续滚动,可得第三拱,第四拱……,所有这些拱的形状都是完全相同的,每一拱的拱高为2a(即圆的直径),拱宽为2πa(即圆的周长)。

悬链线

悬链线

悬链线是一种曲线,因其与两端固定的绳子在均匀引力作用下下垂相似而得名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数。久负盛名的雅各布·伯努利在一篇论文中提出了确定悬链线性质(即方程)的问题。实际上,该问题存在多年且一直被人研究。伽利略就曾推测过悬链线是一条抛物线,但问题一直悬而未决。雅各布觉得,应用奇妙的微积分新方法也许可以解决这一问题。

割圆曲线

割圆曲线是在研究古代三大尺规作图问题时的一种数学成果,其发现者为希庇亚斯,若想作一正方形面积为一半径为AM(M为割圆曲线于边AB交点)的圆的面积,只需作一割圆曲线(如上图),再作出一边长为AM与2AB的矩形,则该矩形面积为半径为AM的圆的面积。再求出AM与2AB的几何平均数√(AM·2AB),则以此为边的正方形的面积即为半径为AM的圆的面积。

蛋圆曲线

蛋圆曲线

正劈锥面被平面所截的交线投影即得平面蛋圆曲线,方程式为x^2/a^2+y^2/(ky+b)^2=1,绝对值k小于1。

蝴蝶曲线

蝴蝶曲线是一种很美的平面上代数曲线,通过一个特定的极坐标公式可以表达。用很多代数曲线和超越曲线可以表达自然界很多现象,蝴蝶曲线就是一种,变量Θ的调整可以改变曲线形状及其方向。

玫瑰线

世界上第一个明确提出经纬度理论的人是古希腊学者托勒密。最早的本初子午线则出现在15世纪出版的托勒密的世界地图上,定在了当时人们心中的世界起点,即现大西洋中非洲西北海岸附近的加那利群岛。

反雪花曲线

反雪花曲线

生成一条雪花曲线是从一个等边三角形开始的.把三角形的每条边等分成三段并在中间的一段向内作小的等边三角形,但删去新三角形位于旧三角形边上的底.继续这个程序,对每个等边三角形的边再等分成三段,并在中段向内作更小的等边三角形,如此等等,雪花曲线就是在不断重复这样的过程中产生的。

(0)

相关推荐

  • 火眼金睛——教你如何快速识别有理数与无理数

    原创不易,欢迎转发,关注李磊数学 实数 是有理数和无理数的总称 数学上 实数定义为与数轴上的点相对应的数 实数可以直观地看作有限小数与无限小数, 实数和数轴上的点一一对应 通过以上详细的介绍 相信大家 ...

  • 【七上数学第4课】 2.2 有理数与无理数(附知识要点)

    点击下列视频直接收看    2.1     有理数与无理数      整数可表示为分母为1的分数. 我们把能够写成分数形式____________________________ 的数叫有理数. 事实 ...

  • 无理数的定义

    ◎ 无理数的定义的定义 无理数定义: 即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环. 常见的无理数有大部分的平方根.π和e(其中后两者同时为超越数 ...

  • 复数的产生

    形如 的形式在数学中被定义为复数,其中 为虚数单位, . 为任意实数. 要说复数的产生,先从数的演变史开始说起. 最初,人们从自然界中启发,得到了数字1.2.3--,当然还有0,这就是自然数,来源人们 ...

  • 皮亚诺曲线

    皮亚诺曲线 皮亚诺曲线(Peano curve)是一曲线序列的极限.只要恰当选择函数,画出一条连续的参数曲线,当参数t在0.1区间取值时,皮亚诺曲线将遍历单位正方形中所有的点,得到一条充满空间的曲线. ...

  • 大家听过皮亚诺曲线吗?是怎么画的?

    1890年,意大利数学家皮亚诺(Peano G)发明能填满一个正方形的曲线,叫做皮亚诺曲线.后来,由希尔伯特作出了这条曲线,又名希尔伯特曲线. Hilbert-Peano曲线是一种分形图形,它可以画得 ...

  • 7亿!澳大利亚顶豪诞生,国际著名设计师伦佐·皮亚诺和 Daniel Goldberg 联手设计!

    欢迎进入澳大利亚最昂贵的项目! 最近,世界级开发商Lendlease对这个「澳大利亚最独特的住所」进行了盛大揭幕,悉尼港一号顶层公寓"Skyhomes"最终以1.4亿澳元(约合7亿 ...

  • 『雕塑头条』宋伟光专栏 | 比萨与雕塑家皮亚诺

    ▲ 大教堂.洗礼堂.钟楼全景 文/宋伟光 车子继续向北,亚平宁地貌在继续延伸,经常看见山岗之上伫立着古城堡,这些城堡有的保存较完好,有的已近废墟.当路过奥菲耶多小镇时,这种景象更加近前. 在去佛罗伦萨 ...

  • 芝加哥美术馆 伦佐皮亚诺设计新馆 建筑参观照片

                                                                                                        ...

  • 855皮亚诺的算术,符号创造还是发现?过客与生命之树———读皮亚诺之二

    有一首古老的英语民歌,描述走出野蛮的人类最常做的三件事: Reading, 读啊! Writing, 写啊! Rithmetic,算啊!(摘自丹齐克著<数科学的语言>第16页) 这三个最普 ...

  • 皮亚诺公理:怎么证明1 1=2?

    在许多人看来,1+1=2,这是常识,不需要证明. 一个苹果和另一个放在一起,那就是两个苹果.一个人和另一个人放在一起,那就是两个人. 虽然一滴水和另一滴放在一起,会变成一滴水,而不是两滴水,不过这也只 ...

  • 数学界的画家--神奇的龙分形!

    数学界的画家--神奇的龙分形!

  • 早读 | '盘'出来的盘状半月板,你真的了解吗?

    膝关节是人体主要的负重关节,突发性和复杂性的受力是膝关节损伤的重要原因,在骨科临床工作中,半月板损伤的患者可以说是十分常见,但你听过盘状半月板吗?你知道如何诊治吗?今天将为大家详细介绍盘状半月板,值得 ...