对齐PyTorch,一文详解OneFlow的DataLoader实现

在最新的OneFlow v0.5.0版本中,我们增加了许多新特性,比如:
  • 新增动态图特性:OneFlow 默认以动态图模式(eager)运行,与静态图模式(graph)相比,更容易搭建网络、调试和验证算法。

  • 面向对象式的动态图接口 nn.Module,熟悉 PyTorch 的用户可以轻松上手。

  • “一行代码转换 OneFlow 与 PyTorch 网络”:与 PyTorch 对齐的算子数目增加至200+。在 ResNet50、AlexNet 等 十几个常用网络 上已通过 import oneflow as torch 和 import torch as flow 验证。注意:此特性是为方便用户由 PyTorch 迁移至 OneFlow 而设计,并不是承诺完全兼容 PyTorch。

  • 面向对象式的静态图接口:新增面向对象的静态图接口 nn.Graph。保留了 OneFlow 静态图性能优势的同时,让静态图的编程门槛与动态图接近,期待更多的算法工程师把 OneFlow 的高性能优势玩起来。这是一个用 nn.Graph 搭建 ResNet50 示例

  • 易用高效的分布式训练:分布式训练是大势所趋,OneFlow 本版本新增的 Consistent Tensor,让用户可以像操作单机单卡一样,操作整个集群,并立即看到效果。新增的 launch 模块、DDP 模块 配合 OneFlow 的一致性视角 让用户轻松启动分布式训练,无论是 数据并行、模型并行、还是流水并行,OneFlow 均原生支持,易用高效。

其中,最重要的新特性之一,就是OneFlow的动态图做到了几乎和PyTorch一致,从Tensor、nn.Module、到autograd、functional api等,其中也包括和torch几乎对齐的DataLoader/Dataset设计,笔者有幸开发了OneFlow中的这一模块。
    https://github.com/Oneflow-Inc/oneflow/pull/5406https://github.com/Oneflow-Inc/oneflow/pull/5500https://github.com/Oneflow-Inc/oneflow/pull/5644https://github.com/Oneflow-Inc/oneflow/pull/6280
    本文将对OneFlow/PyTorch中的DataLoader原理、工作流程进行梳理:
    • dataloader简介
    • dataloader原理
    • dataloader工作流程
    • multiprocessing dataloader工作原理
    1
    简介
    简单来说,DataLoader是深度学习中必不可少的,用于处理Dataset产生每个iter过程中批量数据和label的一种数据加载器。正如PyTorch文档中的描述:DataLoader,结合了Sampler、Dataset,提供了对某个dataset可迭代的数据集合。DataLoader支持单进程、多进程的加载数据集合。

    2

    dataloader原理

    核心组建

    • Dataloader

    • Dataset

    • Sampler

    • Fetcher

    DataLoader工作原理的简单总结:
    1.Dataloader是负责数据加载的核心;DataLoaderIter是具体执行单位。dataloader进入到每一次iter中都会通过DataloaderIter来处理具体的数据加载过程;
    2.Dataset是数据集的基类,任何自定义数据集都需要继承它并通过重写getitem方法来定义取数据的方式;
    3.Sampler是负责index相关的采样器、每个iter迭代都会通过Sampler生成要采样的数据集的index;
    4.Fetcher更像是数据的收集器。根据Sampler产生的batch个index去数据集中fetch对应的数据、并通过相应的collate_fn方法将获取的数据收集打包成最终可用的形式,返回给DataLoader。

    使用示例

    1.MNIST

    下面用PyTorch官方examples的一个简单例子,用MNIST数据集训练分类网络来说明DataLoader的用法:
    transform=transforms.Compose([        transforms.ToTensor(),        transforms.Normalize((0.1307,), (0.3081,))        ])dataset1 = datasets.MNIST('../data', train=True, download=True,                          transform=transform)dataset2 = datasets.MNIST('../data', train=False,                          transform=transform)train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
    可以看到,dataset1、dataset2分别是表示数据集的训练集、测试集。在PyTorch中是通过torchvision.datasets.MNIST定义的。MNIST继承自VisionDataset,而VisionDataset则继承自torch.utils.data.Dataset。在MNIST中,实现了数据集最重要的getitem方法,用于根据index取对应数据:
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
    '''
    Args:
    index (int): Index
    Returns:
    tuple: (image, target) where target is index of the target class.
    '''
    img, target = self.data[index], int(self.targets[index])

    # doing this so that it is consistent with all other datasets
    # to return a PIL Image
    img = Image.fromarray(img.numpy(), mode='L')

    if self.transform is not None:
    img = self.transform(img)

    if self.target_transform is not None:
    target = self.target_transform(target)

    return img, target

    在OneFlow中,oneflow.utils.data对应torch.utils.data;flowvision对应torchvision,使用方式几乎完全一致。例如:对应MNIST数据集,即可直接通过flowvision.datasets.MNIST使用。
    dataset1、dataset2定义完成后,传入分别用于训练、验证的dataloader(train_loader、test_loader)。之后,在train/test的循环中,即可迭代dataloader获取每个iter的数据和label:
    def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
    data, target = data.to(device), target.to(device)
    optimizer.zero_grad()
    output = model(data)
    ....

    2.ImageNet

    这里还是用PyTorch官方examples里ImageNet数据集的训练为例:
    train_dataset = datasets.ImageFolder(
    traindir,
    transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    normalize,
    ]))

    if args.distributed:
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    else:
    train_sampler = None

    train_loader = torch.utils.data.DataLoader(
    train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
    num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(
    datasets.ImageFolder(valdir, transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    normalize,
    ])),
    batch_size=args.batch_size, shuffle=False,
    num_workers=args.workers, pin_memory=True)

    可以看见,大体流程和上面的MNIST差不多:
    1.先是构造Dataset,这里为通过datasets.ImageFolder构造。ImageFolder是用于读取/处理以文件夹形式存放的图片数据集:
    class ImageFolder(DatasetFolder):
    r'''A generic data loader where the images are arranged in this way by default:
    .. code-block:: shell
    root/dog/xxx.png
    root/dog/xxy.png
    root/dog/[...]/xxz.png
    root/cat/123.png
    root/cat/nsdf3.png
    root/cat/[...]/asd932_.png
    This class inherits from :class:`~vision.datasets.DatasetFolder` so
    the same methods can be overridden to customize the dataset.
    Args:
    root (string): Root directory path.
    transform (callable, optional): A function/transform that takes in an PIL image
    and returns a transformed version. E.g, ``transforms.RandomCrop``
    target_transform (callable, optional): A function/transform that takes in the
    target and transforms it.
    loader (callable, optional): A function to load an image given its path.
    is_valid_file (callable, optional): A function that takes path of an Image file
    and check if the file is a valid file (used to check of corrupt files)
    Attributes:
    classes (list): List of the class names sorted alphabetically.
    class_to_idx (dict): Dict with items (class_name, class_index).
    imgs (list): List of (image path, class_index) tuples
    '''

    def __init__(
    self,
    root: str,
    transform: Optional[Callable] = None,
    target_transform: Optional[Callable] = None,
    loader: Callable[[str], Any] = default_loader,
    is_valid_file: Optional[Callable[[str], bool]] = None,
    ):
    super(ImageFolder, self).__init__(
    root,
    loader,
    IMG_EXTENSIONS if is_valid_file is None else None,
    transform=transform,
    target_transform=target_transform,
    is_valid_file=is_valid_file,
    )
    self.imgs = self.samples

    可以看到其继承自DatasetFolder、初始化时主要参数有:
    • root:图片文件夹路径

    • transform:对经过loader读取到的PIL图片,经过哪些transform处理,如上述的Resize、CenterCrop等

    • loader:一个用于根据path加载图片的图像加载器,通常默认的loader是PIL

    DatasetFolder中实现了Dataset中最重要的getitem方法:
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
    '''
    Args:
    index (int): Index
    Returns:
    tuple: (sample, target) where target is class_index of the target class.
    '''
    path, target = self.samples[index]
    sample = self.loader(path)
    if self.transform is not None:
    sample = self.transform(sample)
    if self.target_transform is not None:
    target = self.target_transform(target)

    return sample, target

    通过getitem定义了如何根据index取到相应数据的方式。
    2.其次如果是多机分布式训练,则Sampler需要使用专门为分布式训练设计的DistributedSampler类(否则不用特殊设置,用默认的即可);这里还有个细节,训练集和验证集上,对dataset做了不同的transform,训练集用了RandomResizedCrop、RandomHorizontalFlip;验证集则是Resize、CenterCrop,经过transform后,最终通过ToTensor方法转化成Tensor。
    3.构造用于训练、验证的Dataloader(train_loader、val_loader),后面的使用方式就很简单了,在train/eval的loop中直接使用即可:
    for i, (images, target) in enumerate(train_loader):
    # measure data loading time
    data_time.update(time.time() - end)

    if args.gpu is not None:
    images = images.cuda(args.gpu, non_blocking=True)
    if torch.cuda.is_available():
    target = target.cuda(args.gpu, non_blocking=True)
    .....

    3

    dataloader工作流程

    下面结合代码看一下主要流程:
    Dataset
    任何自定义数据集,必须继承Dataset类并实现_getitem__方法,用于定义根据传入的index获取数据的方式。同时,自定义数据集也可选重写len方法,用于判断数据集的size。
    class Dataset(Generic[T_co]):
    r'''An abstract class representing a :class:`Dataset`.
    All datasets that represent a map from keys to data samples should subclass
    it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a
    data sample for a given key. Subclasses could also optionally overwrite
    :meth:`__len__`, which is expected to return the size of the dataset by many
    :class:`~flow.utils.data.Sampler` implementations and the default options
    of :class:`~flow.utils.data.DataLoader`.
    .. note::
    :class:`~flow.utils.data.DataLoader` by default constructs a index
    sampler that yields integral indices. To make it work with a map-style
    dataset with non-integral indices/keys, a custom sampler must be provided.
    '''

    def __getitem__(self, index) -> T_co:
    raise NotImplementedError

    def __add__(self, other: 'Dataset[T_co]') -> 'ConcatDataset[T_co]':
    return ConcatDataset([self, other])

    DataLoader
    DataLoader是整个数据处理过程的核心。
    class DataLoader(Generic[T_co]):
    def __init__(
    self,
    dataset: Dataset[T_co],
    batch_size: Optional[int] = 1,
    shuffle: bool = False,
    sampler: Optional[Sampler[int]] = None,
    batch_sampler: Optional[Sampler[Sequence[int]]] = None,
    num_workers: int = 0,
    collate_fn: Optional[_collate_fn_t] = None,
    drop_last: bool = False,
    timeout: float = 0,
    worker_init_fn: Optional[_worker_init_fn_t] = None,
    multiprocessing_context=None,
    generator=None,
    *,
    prefetch_factor: int = 2,
    persistent_workers: bool = False
    ):

    ...
    ...
    # We quote '_BaseDataLoaderIter' since it isn't defined yet and the definition can't be moved up
    # since '_BaseDataLoaderIter' references 'DataLoader'.
    def __iter__(self) -> '_BaseDataLoaderIter':
    # When using a single worker the returned iterator should be
    # created everytime to avoid reseting its state
    # However, in the case of a multiple workers iterator
    # the iterator is only created once in the lifetime of the
    # DataLoader object so that workers can be reused
    if self.persistent_workers and self.num_workers > 0:
    if self._iterator is None:
    self._iterator = self._get_iterator()
    else:
    self._iterator._reset(self)
    return self._iterator
    else:
    return self._get_iterator()

    def _get_iterator(self) -> '_BaseDataLoaderIter':
    if self.num_workers == 0 or self.num_workers == 1:
    return _SingleProcessDataLoaderIter(self)
    else:
    self.check_worker_number_rationality()
    return _MultiProcessingDataLoaderIter(self)

    DataLoader在每一个iter迭代过程中,最重要的就是通过上面的__iter__方法完成取数据和label。__iter__里通过_get_iterator方法获取相应的DataLoaderIter实例。
    • 在单进程下,即_SingleProcessDataLoaderIter

    • 多进程下,即_MultiProcessingDataLoaderIter,他们都继承自_BaseDataLoaderIter

    DataLoaderIter
    DataLoaderIter负责DataLoader在每个迭代中具体事务的处理。
    class _BaseDataLoaderIter(object):
    def __init__(self, loader: DataLoader) -> None:
    self._dataset = loader.dataset
    self._dataset_kind = loader._dataset_kind
    self._IterableDataset_len_called = loader._IterableDataset_len_called
    self._auto_collation = loader._auto_collation
    self._drop_last = loader.drop_last
    self._index_sampler = loader._index_sampler
    self._num_workers = loader.num_workers
    self._prefetch_factor = loader.prefetch_factor
    self._pin_memory = False
    self._timeout = loader.timeout
    self._collate_fn = loader.collate_fn
    self._sampler_iter = iter(self._index_sampler)
    self._base_seed = flow.tensor([0], dtype=flow.int64).uniform_().numpy().item()
    # TODO: flow.empty()
    # self._base_seed = flow.empty((), dtype=flow.int64).random_(generator=loader.generator).item()
    self._persistent_workers = loader.persistent_workers
    self._num_yielded = 0
    self._profile_name = 'enumerate(DataLoader)#{}.__next__'.format(
    self.__class__.__name__
    )

    def __iter__(self) -> '_BaseDataLoaderIter':
    return self

    def _reset(self, loader, first_iter=False):
    self._sampler_iter = iter(self._index_sampler)
    self._num_yielded = 0
    self._IterableDataset_len_called = loader._IterableDataset_len_called

    def _next_index(self):
    return next(self._sampler_iter) # may raise StopIteration

    def _next_data(self):
    raise NotImplementedError

    def __next__(self) -> Any:
    if self._sampler_iter is None:
    self._reset()
    data = self._next_data()
    self._num_yielded += 1
    if (
    self._dataset_kind == _DatasetKind.Iterable
    and self._IterableDataset_len_called is not None
    and self._num_yielded > self._IterableDataset_len_called
    ):
    warn_msg = (
    'Length of IterableDataset {} was reported to be {} (when accessing len(dataloader)), but {} '
    'samples have been fetched. '
    ).format(self._dataset, self._IterableDataset_len_called, self._num_yielded)
    if self._num_workers > 1:
    warn_msg += 'Multiprocessing dataloader is not support yet!'
    warnings.warn(warn_msg)
    return data

    def __len__(self) -> int:
    return len(self._index_sampler)

    def __getstate__(self):
    raise NotImplementedError('{} cannot be pickled', self.__class__.__name__)

    class _SingleProcessDataLoaderIter(_BaseDataLoaderIter):
    def __init__(self, loader):
    super(_SingleProcessDataLoaderIter, self).__init__(loader)
    assert self._timeout == 0
    assert 0 <= self._num_workers <= 1

    self._dataset_fetcher = _DatasetKind.create_fetcher(
    self._dataset_kind,
    self._dataset,
    self._auto_collation,
    self._collate_fn,
    self._drop_last,
    )

    def _next_data(self):
    index = self._next_index() # may raise StopIteration
    if self._pin_memory:
    raise NotImplementedError('Dataloader pin memory is not support yet!')
    return self._dataset_fetcher.fetch(index)

    在每一个iter迭代时,会调用_BaseDataLoaderIter的__next__方法,进而调用自类实现的_next_data方法获取数据。以_SingleProcessDataLoaderIter为例:
    • index = self._next_index()通过Sampler获取此次迭代的数据集索引;

    • self._dataset_fetcher.fetch(index)Fetcher根据index索引取相应的数据。

    Fetcher
    Fetcher作为数据收集器,会根据Sampler产生的batch的index,来从数据集中切分、收集、打包成完整可用的一个batch的数据,并返回给DataLoader使用。
    class _MapDatasetFetcher(_BaseDatasetFetcher):
    def __init__(self, dataset, auto_collation, collate_fn, drop_last):
    super(_MapDatasetFetcher, self).__init__(
    dataset, auto_collation, collate_fn, drop_last
    )

    def fetch(self, possibly_batched_index):
    if self.auto_collation:
    data = [self.dataset[idx] for idx in possibly_batched_index]
    else:
    data = self.dataset[possibly_batched_index]
    return self.collate_fn(data)

    Fetcher这里和DataLoaderIter(BaseDataLoaderIter)_类似,_都有一个基类的实现BaseDatasetFetcher。根据不同的数据类型,进入到不同的子类实现中,这里以常用的_MapDatasetFetcher的子类实现为例,看一下Fetcher的主要工作。
    可以看见,主要就是:
    • data = [self.dataset[idx] for idx in possibly_batched_index]

    • return self.collate_fn(data)

    1.根据传入的batch个index列表,去dataset中去切分相应的数据,返回的是取出后的batch个数据的列表;
    2.根据传入的或自定义的collate_fn方法,收集处理这batch个数据,并打包成训练/验证时可直接使用的Tensor。

    4

    multiprocessing dataloader工作原理

    原理

    普通的单进程DataLoader在处理每个iter的数据处理是iter-by-iter且同步的,受制于Python没有实际上的多线程执行,所以单进程的DataLoader通常是比较慢的。多进程DataLoader,即通过Python的multiprocessing开启多个Python的worker进程,譬如开启4个worker进程后,理论上每单位时间可以处理4个iter的数据集,加速数据处理/加载的过程。
    单进程DataLoader下,由于数据处理是iter-by-iter的,下一个iter的处理需要等待当前iter完成后才可开始;多进程DataLoader和单进程DataLoader的主要区别就在于可以通过Python的multiprocessing模块,启动多个worker进程加速这个过程。
    这里以4进程的DataLoader为例:
    DataLoader的主线程将当前iter的任务下发给worker1之后,再下发下一个iter的任务给worker2....直至下发第4个iter的处理任务给worker4。这一步骤主要在dataloader.py的L1024-L1026中实现:
    # prime the prefetch loop
    for _ in range(self._prefetch_factor * self._num_workers):
    self._try_put_index()
    陆续发送完index后,这4个worker可以并行的工作,陆续完成自己iter的处理任务后,将结果塞入一个Queue队列中,DataLoader的主线程从队列中取数据即可。
    具体到每个worker的工作流程,其实和单进程的DataLoader工作流程是类似的,下面主要介绍下多进程和单进程DataLoader的区别,以及多个worker之间是如何协同工作的。

    工作流程

    _MultiProcessingDataLoaderIter
    def _next_data(self):
    # DataLoaderIter通过此方法获取每个iter的数据,主要调用_get_data实现

    def _get_data(self):
    # _get_data方法中,主要通过调用_try_get_data()获取数据

    def _try_get_data(self, timeout=_utils.MP_STATUS_CHECK_INTERVAL):
    # 从主进程的_data_queue中获取数据
    ...
    try:
    data = self._data_queue.get(timeout=timeout)
    return (True, data)
    except Exception as e:
    ...

    def _process_data(self, data):
    # 主要工作即:1.通过_try_put_index()来将下一个iter的index放入一个活跃的worker进程中
    # 2.同时标记_rcvd_idx,使其增加1。
    self._rcvd_idx += 1
    self._try_put_index()
    if isinstance(data, ExceptionWrapper):
    data.reraise()
    return data

    def _try_put_index(self):
    # 主要工作即遍历所有workers,找到第一个活跃的worker(worker_queue_idx标识)
    # 将index和_send_idx信息放入此worker的index_queue中
    # 每个worker拥有独立的index_queue,收到index_queue的信息后即开始工作
    assert self._tasks_outstanding < self._prefetch_factor * self._num_workers
    try:
    index = self._next_index()
    except StopIteration:
    return
    for _ in range(self._num_workers): # find the next active worker, if any
    worker_queue_idx = next(self._worker_queue_idx_cycle)
    if self._workers_status[worker_queue_idx]:
    break
    else:
    # not found (i.e., didn't break)
    return

    self._index_queues[worker_queue_idx].put((self._send_idx, index))
    self._task_info[self._send_idx] = (worker_queue_idx,)
    self._tasks_outstanding += 1
    self._send_idx += 1

    _next_data()
    ⬇️
    _get_data() ➡️ _try_get_data()
    ⬇️
    _process_data() ➡️ _try_put_index()
    每个worker独立工作,主要代码在oneflow/python/oneflow/utils/data/_utils/worker.py的_worker_loop()方法中:
    while watchdog.is_alive():
    try:
    r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
    except queue.Empty:
    continue
    if isinstance(r, _ResumeIteration):
    # Acknowledge the main process
    data_queue.put((r, None))
    iteration_end = False
    # Recreate the fetcher for worker-reuse policy
    fetcher = _DatasetKind.create_fetcher(
    dataset_kind, dataset, auto_collation, collate_fn, drop_last
    )
    continue
    elif r is None:
    # Received the final signal
    assert done_event.is_set() or iteration_end
    break
    elif done_event.is_set() or iteration_end:
    # `done_event` is set. But I haven't received the final signal
    # (None) yet. I will keep continuing until get it, and skip the
    # processing steps.
    continue
    idx, index = r
    data: Union[_IterableDatasetStopIteration, ExceptionWrapper]

    if init_exception is not None:
    data = init_exception
    init_exception = None
    else:
    try:
    data = fetcher.fetch(index)
    except Exception as e:
    if (
    isinstance(e, StopIteration)
    and dataset_kind == _DatasetKind.Iterable
    ):
    data = _IterableDatasetStopIteration(worker_id)
    # Set `iteration_end`
    # (1) to save future `next(...)` calls, and
    # (2) to avoid sending multiple `_IterableDatasetStopIteration`s.
    iteration_end = True
    else:
    # It is important that we don't store exc_info in a variable.
    # `ExceptionWrapper` does the correct thing.
    # See NOTE [ Python Traceback Reference Cycle Problem ]
    data = ExceptionWrapper(
    where='in DataLoader worker process {}'.format(worker_id)
    )
    data_queue.put((idx, data))
    del data, idx, index, r # save memory
    except KeyboardInterrupt:
    # Main process will raise KeyboardInterrupt anyways.
    pass

    每个worker在自己的worker loop中,一旦
    r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)获取index_queue中的index数据,就会开始工作:
    idx, index = r >> data = fetcher.fetch(index) 这部分内容和之前描述的单进程DataLoader的工作流程没有区别。
    当获取到处理完成的数据data后,会将其放入到data loader main线程的data_queue中: data_queue.put((idx, data)) 等待DataLoader主线程从queue中获取结果。
    以上即为多进程DataLoader的主要工作流程。
    5
    结语
    本文梳理总结了DataLoader/Dataset,希望能对大家了解OneFlow/PyTorch动态图模式下的DataLoader/Dataset工作原理有所帮助。
    对齐PyTorch的DataLoader/Dataset只是第一步,后续仍然面临着效率瓶颈等问题,因为即使使用了multiprocess的DataLoader,在某些情况下,图像解码、Python下调用C++ op执行各种transform时仍可能遭遇性能问题,造成训练过程中GPU打不满/等待CPU数据处理等情况,后续需要考虑更高效的解决方案(如Dali等)。
    其他人都在看
    (0)

    相关推荐