北京航空航天大学杨树斌课题组---过渡金属碳化物(MXenes)的高熵原子层
高熵材料(HEMs)由于其多样化的成分以及意想不到的物理和化学特性而具有巨大的能量存储和转化潜力。然而,具有完全暴露活性位点的高熵原子层很难合成,因为它们的相很容易分离。在这里,证明了通过选择性蚀刻新型高熵MAX(也被称为Mn+1AXn (n=1,2,3),其中M代表可以产生过渡金属碳化物(HE-MXene)的高熵原子层一种早期的过渡金属元素,A是主要来自13-16族的元素,X代 C和/或N)相(HE-MAX)(Ti1/5V1/5Zr1/5Nb1/5Ta1/5)2AlC,成功制备出一种过渡金属碳化物高熵原子层(HE-MXene),其中五种过渡金属物种均匀地分散于一个MX层中,由于高摩尔构型熵和相应的低吉布斯自由能,在原子层中产生稳定的过渡金属碳化物。此外,所制备出具有明显晶格畸变的高熵MXene也导致原子层中的高力学应变。这种力学应变可以有效地引导锂在HE-MXene上的均匀形核和无枝晶生长,从而实现长达1200 h的循环稳定性和高达20 mAh cm−2的深度剥离-电镀水平。该工作为通过选择性蚀刻高熵MAX相来合成过渡金属碳化物高熵原子层提供了一条有吸引力的途径。此外,由于高熵MAX相组成的多样性,可以合理地设计出一系列原子级厚度的HEMs,从而大大拓展二维材料家族。该工作还揭示了一类具有独特物理化学特性的新型原子级厚度HEMs,其在催化、储能、电磁屏蔽和超导领域也具有广阔的应用前景。
Figure 1. 高熵MAX相(HE-MAX)的理论和实验表征。(a)MAX相在熵增条件下的晶格畸变图。(b)DFT计算出含有Ti、V、Zr、Nb和Ta五个物种的MAX相生成焓,随着MAX相中过渡金属数量的增加,生成焓显著降低;含有Ti、V、Zr、Nb和Ta物种MAX相的(c)XRD图与(d)XRD放大图,说明MAX相中(002)特征峰的明显位移。
Figure 2. 高熵MXene的形貌和结构表征。(a)通过HCl/LiF蚀刻法从HE-MAX (Ti1/5V1/5Zr1/5Nb1/5Ta1/5)2AlC中制备HE-MXene的流程示意图。(b)含有Ti、V、Zr、Nb和Ta物种MXenes的XRD衍射图,显示出(002)特征峰。HE-MXene原子层的(c)SEM和(d)HRTEM及对应的FFT图,显示出超薄及单晶结构,其中图c中的插图为HE-MXene原子层以1 mg mL−1的浓度分散在水中的照片。(e)HE-MXene的原子级分辨率HAADF图及其I和II区域的放大图,显示出一些不同亮度强度的原子排列在扭曲的六边形结构中。
Figure 3. (Ti1/5V1/5Zr1/5Nb1/5Ta1/5)2AlC衍生出高熵MXene的组分表征。HE-MXene的(a)STEM和(b-i)对应的元素映射图,说明Ti(b),V(c),Zr(d),Nb(e),Ta(f),C(g),O(h),F(i)物种的共存和均匀分布。(j)HE-MXene相对应的EDS光谱,显示出过渡金属元素的含量在5-35 at.%范围内。
Figure 4. (Ti1/5V1/5Zr1/5Nb1/5Ta1/5)2AlC衍生出高熵MXene的结构和应变分析。HE-MAX(Ti1/5V1/5Zr1/5Nb1/5Ta1/5)2AlC及对应HE-MXene的(a)XPS光谱和(b)FTIR光谱,证明HE-MXene中Al物种的成功去除。(c)HE-MXene中的高分辨率Ti 2p、V 2p、Zr 3d、Nb 3d和Ta 4f的XPS光谱,表明了Ti–C,V–C,Zr–C,Nb–C,Ta–C键的存在。HE-MXene中应变的(d)exx分布及(e)exy分布,呈现强应变现象,其中绿色到深蓝色表示压缩应变度,红色到亮黄色表示拉伸应变度。
Figure 5. 高熵MXene在对称和全电池中的电化学性能。(a)锂通过应变在HE-MXene原子层上的成核与生长示意图。(b)Li在0.05 mA cm−2电流密度下,HE-MXene上电镀电压曲线上的成核过电位,表明成核过电位为6 mV,远小于TiNbCTx (22 mV),Ti2CTx (34 mV),裸Li (112 mV)。(c)HE-MXene-Li,TiNbTx-Li,Ti2CTx-Li,裸Li对称电池在1.0 mA cm−2,1.0 mAh cm−2条件下的横流循环性能,显示出HE-MXene-Li在9 mV的低过电位下具有高达1200 h的长期循环寿命。(d)HE-MXene–Li在1.0 mA cm−2电流密度下于不同深度剥离-电镀容量5,10,20 mAh cm−2时的恒流循环性能。HE-MXene–Li/LFP全电池在0.2至10 C不同倍率下的(e)充放电曲线与(f)倍率性能。
相关研究成果由北京航空航天大学Shubin Yang课题组于2021年发表于《ADVANCED MATERIALS》(https://doi.org/10.1002/adma.202101473)上。原文:High-Entropy Atomic Layers of Transition-Metal Carbides (MXenes)。
杨树斌
职称职务: 教授
所在单位: 材料物理与化学系
联系电话:010-82339714
传真:010-82339714
电子邮箱:yangshubin@buaa.edu.cn
办公地点:北京航空航天大学 IRC楼307
研究方向
1.新能源(锂离子电池,锂-空电池,锂-硫电池)电极材料
2.燃料电池非贵金属催化剂
3.新型炭材料
4.低维度纳米材料的制备、性质及应用
主要科研成果
最近5年来,在材料学,特别是在与材料相关的电化学和新能源应用等领域以第一作者或通讯作者的科研成果发表在诸多国际权威期刊上,如Acc. Chem. Res.(1篇), Angew. Chem. Int. Ed. (3篇), Adv. Mater.(5篇), Nano Lett.(1篇), Sci. Rep.(1篇), Adv. Funct. Mater.(2篇)和Small(1篇)等共20余篇。外加共同作者的论文Nature Commun. (1篇), Adv. Mater.(4篇)和J. Am. Chem. Soc. 等共40余篇。这些论文短期内被材料化学领域同行大量引用(2000余次),其中两篇Angewan. Chem. 被评为“非常重要论文”(Very important paper, top 5%) 和“热点论文”(Hot paper)。最新Nano Lett.论文被全球70多家权威媒体如Science Daily, Science Business, Green Car Congress 等专题报道。应邀承担多个国际知名杂志如Adv. Mater., Adv. Funct. Mater., Adv. Energy Mater., Carbon, Electrochem. Commun., Chemistry等的审稿人。 近5年代表性论文: 1. Shubin Yang, Xinliang Feng, Klaus Müllen. Use of organic precursors or graphene on the controlled synthesis of carbon-containing nanomaterials for energy storage and conversions, Accounts of Chemical Research, 46, 116-128, 2013. 2. Shubin Yang*, Yongji Gong, Zheng Liu, Liang Zhan, Daniel Hashim, Lulu Ma, Robert Vajtai, Pulickel M. Ajayan. Bottom-up Approach towards Single-Crystalline VO2-Graphene Ribbons as Cathodes for Ultrafast Lithium Storage, Nano Lett.., 13, 1596-1601, 2013. 3. Shubin Yang*, Yongji Gong, Robert Vajtai, Xinchen Wang, Pulickel M. Ajayan. Efficient exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv. Mater., 25, 2452-2456, 2013. 4. Yongji Gong, Shubin Yang*, Zheng Liu, Lulu Ma, Robert Vajtai, Pulickel M. Ajayan. Graphene-Network-Backboned Architectures for High-Performance Lithium Storage, Adv. Mater., 25, 3979-3984, 2013. 5. Yongji Gong, Shubin Yang*, Liang Zhan, Lulu Ma, Robert Vajtai, Pulickel M. Ajayan. A bottom-up approach to build 3D architectures from nanosheets for Lithium Storage, Adv. Funct. Mater., 24, 125-130, 2014. 6. Liujun Cao, Shubin Yang*, Wei Gao, Zheng Liu, Yongji Gong, Lulu Ma, Robert Vajtai, Pulickel M. Ajayan. Direct Laser Patterned Micro-Supercapacitors from Paintable MoS2 Films, Small, 9, 2905-2910, 2013. 7. Shubin Yang, Liang Zhan, Xiaoyue Xu, Yanli Wang, Licheng Ling, Xinliang Feng. Graphene-Based Porous Silica Sheets Impregnated with Polyethyleneimine for Superior CO2 Capture, Adv. Mater., 25, 2130-2134, 2013. 8. Shubin Yang, Yi Sun, Long Chen, Yenny Hernandez, Xinliang Feng, Klaus Müllen. Porous iron oxide ribbons grown on graphene for high-performance lithium storage. Scientific Report, 2, 427, 2012. 9. Shubin Yang, Linjie Zhi, Kun Tang, Xinliang Feng, Joachim Maier, Klaus Müllen. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions, Adv. Funct. Mater., 22, 3634-3640, 2012. 10. Shubin Yang, Xinliang Feng, Xinchen Wang, Klaus Müllen. Graphene- based carbon nitride nanohseets as efficient metal-free electrocatalysts for oxygen reduction reaction, Angwen. Chem. Int. Ed., 50, 5339-5343, 2011. 11. Shubin Yang, Xinliang Feng, Klaus Müllen. Sandwich-like, graphene- based titania nanosheets with high surface area for ultrafast lithium storage, Adv. Mater., 23, 3575-3579, 2011. 12. Shubin Yang, Xinliang Feng, Long Wang, Kun Tang, Joachim Maier, Klaus Müllen. Graphene-based nanosheets with a sandwich structure, Angwen. Chem. Int. Ed., 49, 4795-4799, 2010. (VIP) 13. Shubin Yang, Xinliang Feng, Sorin Ivanovici, Klaus Müllen. Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage, Angwen. Chem. Int. Ed., 49, 8408-8411,2010. (Hot paper) 14. Shubin Yang, Xinliang Feng, Linjie Zhi, Qian Cao, Joachim Maier, Klaus Müllen. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage, Adv. Mater., 49, 4795-4799, 2010. 15. Shubin Yang, Guanglei Cui, Shuping Pang, Qian Cao, Ute Kolb, Xinliang Feng, Joachim Maier, Klaus Müllen. Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries, ChemSusChem, 3, 236-239, 2010. 16. Zhongshuai Wu, Shubin Yang, Yi Sun, Khaled parvez, Xinliang Feng, Klaus Müllen. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc, 134, 9082-9085, 2012. 17. Shuping Pang, Shubin Yang, Xinliang Feng, Klaus Müllen. Coplanar asymmetrical reduced graphene oxide?titanium electrodes for polymer photodetectors. Adv. Mater., 24, 1566-1570, 2012. 18. Qunting Qu, Shubin Yang, Xinliang Feng. 2D Sandwich-like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors. Adv. Mater., 23, 5574-5580, 2011. 19. Yongji Gong, Gang Shi, Zhuhua Zhang, Wu Zhou, Jeil Jung, Weilu Gao, Lulu Ma, Yang Yang, Shubin Yang, Ge You, Robert Vajtai, Qianfan Xu, Allan H. MacDonald, Boris I. Yakobson, Jun Lou, Zheng Liu, Pulickel M. Ajayan. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers, Nature Commun., 5, 3193, 2014.