数学思想是数学文化
数学思想是数学文化的核心。梁漱溟在《东西文化及其哲学》的书中区别了文化和文明:文化是那个时代人们生活的样子,文明是那个时代人们创造的东西。据此或许可以说,文化是生活的形态表现,文明是生活的物质表现。那么,数学文化就是数学的形态表现,可以包括:数学形式、数学历史、数学思想。其中思想是本质的,没有思想就没有文化。数学历史、数学思想。其中思想是本质的,没有思想就没有文化。把传统的“双基”扩充为“四基”,即在基础知识和基本技能的基础上加上了基本思想和基本活动经验。基本活动经验的重要性是不言而喻的,因为数学的结果是“看”出来的,而不是“证”出来的,这就依赖于直观判断。正如希尔伯特在《几何基础》第一版的扉页引用康德的话:人类的一切知识都是从直观开始,从那里进到概念,而以理念结束。几乎所有的大数学家都强调直观的重要性,数学直观的养成不仅依赖数学知识,更依赖思考问题的方法,依赖思维经验的积累。那么,数学思想是什么呢?以归纳为三种基本思想,即抽象、推理和模型。通过抽象,人们把外部世界与数学有关的东西抽象到数学内部,形成数学研究的对象,其思维特征是抽象能力强;通过推理,人们得到数学的命题和计算方法,促进数学内部的发展,其思维特征是逻辑能力强;通过模型,人们创造出具有表现力的数学语言,构建了数学与外部世界的桥梁,其思维特征是应用能力强。三、什么是抽象对于数学,抽象主要包括两方面的内容:数量与数量关系的抽象,图形与图形关系的抽象。其中关系是重要的,正如亚里士多德所说:数学家用抽象的方法对事物进行研究,去掉感性的东西剩下的只有数量和关系;对于数学研究而言,线、角或者其他的量,不是作为存在而是作为关系。通过抽象得到数学的基本概念,这些基本概念包括:数学研究对象的定义、刻画对象之间关系的术语和符号以及刻画对象之间关系的运算方法。这种抽象是一种从感性具体上升到理性具体的思维过程,这样的抽象还只是第一次抽象。在此基础上,还能凭借想象和类比进行第二次抽象,其特点是符号化,得到那些并非直接来源于现实的数学概念和运算方法,比如实数和高维空间的概念,比如极限和四元数的运算。第二次抽象是此理性具体扩充到彼理性具体的思维过程,在这个意义上,数学并非仅仅研究那些直接来源于现实生活的东西。数量与数量关系的抽象。数学把数量抽象为数,经过长期的实践,形成了自然数,并且用十个符号和位数表示。数量关系的本质是多与少,把这种关系抽象到数学内部就是数的大小,后来演变为一般的序关系。由大小关系派生出自然数的加法,逆运算产生了减法、简便运算产生了乘法、乘法逆运算产生了除法。数的运算本质是四则运算,都是基于加法的,这也是计算机的运算原理。通过对运算性质的分析,抽象出运算法则;通过对运算结果的分析,抽象出数的集合。们通常认为思维形式有三种,即形象思维、逻辑思维和辩证思维,数学主要依赖的是逻辑思维。逻辑思维的集中表现是逻辑推理,人们通过推理,能够深刻地理解数学研究对象之间的逻辑关系,并且可以用抽象了的术语和符号清晰地描述这种关系。因此,人们通过推理形成各种命题、定理和运算法则,促进了数学的发展。随着数学研究的不断深入,根据研究问题的不同数学逐渐形成各个分支,甚至形成各种流派。既便如此,因为数学研究问题的出发点是一致的,逻辑推理规则也是一致的,因此,至少到现在的研究结果表明,数学的整体一致性是不可动摇的。也就是说,数学的各个分支所研究的问题似乎是风马牛不相及的,但是,数学各个分支得到的结果之间却是相互协调的。为此,人们不能不为数学的这种整体一致性感到惊叹:数学似乎蕴含着类似真理那样的合理性。所谓推理,是指从一个命题判断到另一个命题判断的思维过程,其中命题是指可供是否判断的语句;所谓有逻辑的推理,是指所涉及的命题内涵之间具有某种传递性。在本质上,只存在两种形式的逻辑推理,一种是归纳推理,一种是演绎推理。归纳推理。归纳推理是命题内涵由小到大的推理,是一种从特殊到一般的推理。因此,通过归纳推理得到的结论是或然的。归纳推理包括归纳法、类比法、简单枚举法、数据分析等等。人们借助归纳推理,从经验过的东西出发推断未曾经验过的东西,这便是上面所说的“看”出数学结果,看出的数学结果不一定是正确的,但指引了数学研究的方向。演绎推理。演绎推理是命题内涵由大到小的推理,是一种从一般到特殊的推理。因此,通过演绎推理得到的结论是必然的。演绎推理包括三段论、反证法、数学归纳法、算法逻辑等。人们借助演绎推理,按照假设前提和规定的法则验证那些通过推断得到的结论,这便是数学的“证明”,通过证明得到的结论是正确的,但不能使命题的内涵得到扩张。数学的结论之所以具有类似真理那样的合理性,或者说数学具有严谨性,正是因为数学的整个推理过程严格地遵循了这两种形式的推理。我们不可能把抽象和推理截然分开:抽象的过程、特别是第二次抽象的过程要依赖推理;而两种形式的推理、特别是归纳推理的过程要依赖抽象。五、抽象的存在关于抽象了的东西是如何存在的,这是从古至今争论的话题,这个争论是从古希腊学者柏拉图和亚里士多德开始。或许正是因为有了这个争论才导致了数学的严谨性,因此,只有很好地理解这个问题,才能更好地把握数学的思想。柏拉图认为人的经验是不可靠的,经验可能随着时间的改变而改变,也可能随着场合的改变而改变。因此,所有基于经验的概念都是不可靠的,也是不可能的。数学的概念不应当是经验意义上的存在,而应当是一种永恒的存在。柏拉图把这种永恒的存在称为理念,并且认为只有理念才是真正的存在。因此,数学是一种“发现”,即发现了那些“实际”存在了的东西。这便是“唯实论”。亚里士多德的想法正好相反。一般概念是对许多具体存在的事物的共性抽象得到的,所以一般概念不可能是真正的存在,一般概念表现于特殊事物,每个具体存在都是一般概念的特例。因此,数学的研究对象、以及表述研究对象之间关系术语都是抽象出来的,在这个意义上,数学只能是一种“发明”。这便是“唯名论”。事实上,抽象了的东西不是具体的存在,而是一种理念的存在,或者说,是一种抽象的存在。这便是《周易·系辞》中“形而上者谓之道,形而下者谓之器”所说的“形”。比如,看到足球、乒乓球,在头脑中形成圆的概念,这个概念就是一种抽象的存在,这种存在已经脱离了具体的足球和乒乓球。借助这种抽象的概念,可以在黑板上画出圆,甚至还可以定义圆,可以研究圆的性质。这种抽象的存在构成了数学研究的基础,数学研究的是普遍存在的东西,而不是某个具体存在的东西。正是由于这种普遍性,数学才可以得到广泛的应用。数学就是研究那些抽象了的存在的东西。但是,通过上面的讨论可以看到,即便数学的第二次抽象在形式上是美妙的,但其功能至多是很好地解释了第一次抽象得到的那些结果,因此,在本质上无重大发明可言。而数学的第一次抽象是来源于经验的,抽象的对象是现实世界,而只有直接从现实世界中抽象出来的那些问题,才是朝气蓬勃的,才可能具有不断发展的生命力。正如冯·诺伊曼所说:数学思想来源于经验,我想这一点是比较接近真理的…… 数学思想一旦被构思出来,这门学科就开始经历它本身所特有的生命。事实上,认为数学是一门创造性的、受审美因素支配的学科,比认为数学是一门别的、特别是经验的学科要更确切一些。换句话说,在距离经验本源很远的地方,或者在多次“抽象的”近亲繁殖之后,一门数学学科就有退化的危险。那么,数学的那些概念、原理和思维方法应当如何与现实世界联系呢?合理的思维过程具有理性加工的功能,而现实世界的那些东西一旦经过理性加工,不仅具有了一般性并且具有了真实性。六、什么是模型数学模型与通常所说的数学应用是有所区别的。数学应用涉及的范围相当宽泛,可以泛指应用数学解决实际问题的所有事情。虽然数学模型也属于数学应用的范畴,但更侧重于用数学的概念、原理和思维方法描述现实世界中的那些规律性的东西。数学模型是指用数学的语言描述现实世界所依赖的思想。数学模型使数学走出数学的世界,是构建数学与现实世界的桥梁。通俗地说,数学模型是借用数学的语言讲述现实世界的故事。数学模型的出发点不仅是数学,还包括现实世界中的那些将要讲述的东西。就像建筑桥梁一样,在建筑之前必须清楚要把桥梁建筑在哪里。并且,研究手法也不是单向的,需要从数学和现实这两个出发点开始,规划研究路径、构建描述用语、验证研究结果、解释结果含义,从而得到与现实世界相容的、可以描述现实世界的结论。在现实世界中,放之四海而皆准的东西是不存在的,数学模型必然有其适用范围,这个适用范围通常表现于模型的假设前提、模型的初始值、模型参数的某些限制。在这个意义上,所有的数学表达,比如函数、方程、公式等,本身都不是数学模型,而是描述现实世界的数学语言。因为数学模型具有数学和现实这两个出发点,数学模型就不完全属于数学。大多数应用性很强的数学模型的命名,都依赖于所描述的学科背景。比如,在生物中:种群增长模型,基因复制模型等;在医药学中:专家诊断模型,疾病靶向模型等;在气象学中:大气环流模型,中长期预报模型等;在地质学中:板块构造模型,地下水模型等;在经济学中:股票衍生模型,组合投资模型等;在管理学中:投入产出模型,人力资源模型等;在社会学中:人口发展模型,信息传播模型等。在物理学和化学中,各类数学模型更是百花齐放。数学模型的价值取向往往不是数学本身,而是对描述学科所起的作用。比如,那些获得诺贝尔经济学奖的数学模型,人们关注的并不是模型的数学价值,而是实际应用价值。但是,数学家们在构建数学模型和实际应用的过程中,必然会从数学的角度汲取“创造数学”的灵感,促进数学自身的发展,就像冯·诺伊曼所说过的那样。数学的基本思想,即抽象、推理、模型,为数学由现实到数学、数学内部发展、由数学到现实提供了思维功能,理性地把握这些功能对数学的教学是有益处的。虽然现代数学的特征是符号化、形式化和公理化,但其本质是为了更好地描述数学的成果。正如阿蒂亚所说:严格数学论证的作用在于使得本来是主观的、极度依赖个人直觉的事物,变得具有客观性并能够加以传递。因此,为了更好地让学生理解数学,为了让学生建立数学的直观,在数学的教学过程中还需要反其道而行之:针对对象的符号化要讲物理背景,针对证明的形式化要讲直观,针对逻辑的公理化要讲归纳。