人工智能时代,计算思维培养的七种教学策略(上)
如今,在大数据和人工智能的推动下,计算思维被赋予新的内涵,进一步深化了计算思维在科学与社会经济领域的意义和价值,人工智能时代中小学计算思维培养需要全新的策略框架。
人工智能时代计算思维培养的策略框架
人工智能时代的个体核心能力体现在以计算思维为代表的高级思维能力。然而,中小学校现有的计算思维教育理念沿袭了“计算机能力—编程能力—计算思维”的线性思维,高度依赖计算机学科教育或编程教育,忽视了计算思维培养的其他路径。
随着人工智能技术的快速普及,嵌入人工智能系统的大量算法模式丰富了人类对算法的认知,也丰富了计算思维的教学内容和教学策略,更有助于提升学生的问题解决能力,培养他们的计算思维。
基于此,美国人工智能促进协会联合美国计算机科学教师协会和卡梅隆大学研制了K-12人工智能教学指南。该指南不仅设计了从小学到高中开展人工智能教学的目标与内容,还对中小学阶段该如何教人工智能课程给出了具体清晰、可操作性强且符合学生学习规律的教学策略与活动建议。
我们发现这些策略和活动也特别有利于对学生计算思维的培养,受此启发,本文立足我国中小学技术类相关课程的教学实际,结合具体案例,阐述中小学计算思维培养的四类七种策略(见表1)。
表 1 中小学计算思维培养的策略框架
解析中小学计算思维培养的教学策略
(一)实验探究
教师组织学生使用各种类型的人工智能软硬件资源,通过实验探究教学,促进学生体验和理解人工智能,在实验中提高计算思维能力。
游戏化教学包括数字化游戏和游戏活动两类。有学者以Blockly游戏为平台对学生进行计算思维训练,证实了教育机器人可提高学生对科学、技术、工程和数学等学科知识的获取能力,同时促进计算思维的培养。
Garneli等人将学生分为两组,一组通过包含科学内容的电子游戏情境,另一组通过设计适当的项目来学习相同的科学和计算课程。结果表明,游戏情境更有助于学生获得计算思维技能。
这种跨学科的游戏化教育情境可以应用在典型的学校情境中,以促进学生获得更多计算思维技能和学科内容。
此外,AI机器人课程是游戏化教学应用最多的学科,在利用人工智能技术提高计算思维的研究中,Bers等人发现,由于机器人课程中包含游戏化的思维训练,学龄前学生可通过与机器人一起学习获得基本的计算技能。
Kahoot是一个基于游戏实现课堂实时反馈的网络评估平台,是包含智能批改和排行公告榜的自动化智能系统。由此衍生的Kahoot教育模式十分流行,将编程中的计算思维难点变成一个个游戏,学生完成教师的测试题就像在游戏中升级打怪,他们的计算思维会自然养成。
小组学习包括合作学习和协作学习。根据Papert的建构主义学习理论,学生在虚拟环境中通过互动和合作完成学习任务,能有效提高学生的社会互动、认知、高阶思维和计算思维。Wilkerson构建了一个协作学习系统,以帮助学生学习如何计算面积。
从实验结果可以看出,学生通过主导和分配角色合作完成学习任务,所得到的学习效果是最好的。计算思维是一种问题求解思维,它将问题求解的过程用“程序化”或“机械化”的方式表示出来。
《普通高中信息技术课程标准(2017年版)》设立了“人工智能初步”选修模块。其中,探究“机器人巡线问题”是使用机器人完成各种任务的一个重要环节。学生可通过小组合作探究,分析实际问题,提出解决问题的方法和步骤(算法),再通过流程图转化为实际程序编写的过程。
这一过程中,学生需要运用合理的算法形成各个小组的问题解决方案,由此锻炼和提升了学生的计算思维。
人工智能为翻转教学注入了新的动力。
一方面,基于语音识别、自然语言处理等技术的教学测评系统和智能问答系统,可以将教师从重复性、程序性的工作中解放出来;
另一方面,人工智能技术为学生提供了更为精准、个性化的指导,凸显了教学中学生的主体地位,增强了学生学习的自主性。
例如,在以“计算机科学”为教学内容的翻转课堂中,学生3/4的课程时间花在计算机实验室,用以学习教师在学习管理系统中预先发布的学习材料,并通过个人实践与线上测评等活动消化和吸收相关知识。
剩下的1/4时间,教师引导学生讨论学习的关键概念和技能,加强对所学和所实践内容的理解。研究表明,翻转教学不仅提升了学生的计算思维技能,还激发了他们的学习动机,改善了他们的学习策略。
(二)不插电编程
算法是计算思维中必不可少的核心内容。通常情况下,算法与计算机、互联网紧密相关,而不插电编程则让学生不再依赖计算机设备开展开放性活动,是一种帮助学生理解问题解决思路与技术手段的新形式。
不插电编程就是通过各种生动有趣的任务活动或者开放式的学习环境,将编程知识和计算思维融入其中,让学生不用电脑就能学习到计算机科学知识。
Havva等人在Bebras国际计算思维挑战赛基础上开发了不插电编程任务,包括简单、中等、困难三个水平,让学生在经历抽象、分解、算法和泛化的思维过程中解决问题。
研究表明,不插电编程任务同样可以提高学生的计算思维技能,当然,它也要求教师教学时紧扣知识内容与计算思维的内在衔接关系。在不插电编程的社区网站上经常更新一些与计算思维概念紧密相关的教学案例。
例如,在“分解”活动中,学生得到的任务是将情景问题(如种树)分解,并写出解决问题的必要步骤;在“莫妮卡地图”活动中,学生需要在一张地图中使用上下左右(即↑,↓,←,→)找到两个物体之间的最短路径。
之后,学会使用乘数(即→→→→=4x→)来表示解决问题过程。学生在完成这些任务的过程中,深入理解分解算法、模式识别、抽象等计算思维概念。
(三)设计类活动
在活动设计教学中,教师为学生提供不同形式的支架,引导和鼓励学生设计出自己的作品,在设计和实践中促进学生计算思维的发展。
隐喻作为常见的修辞术语被大家所熟知,而在教学中,隐喻往往是用具体可感的事物来类比抽象的事物,避免了纯粹的概念和枯燥的逻辑带来的教学困难。
Diana等人使用隐喻和图形化编程软件相结合的方式向小学生教授编程,即在教学过程中用学生可以理解的事物类比概念性较强的指令,如变量和输入输出指令、条件指令、循环指令。学生在理解了基本概念后,再用图形化编程软件练习并设计出一件作品。
结果证明,隐喻和图形化编程软件相结合的方式有利于培养小学生的计算思维,并且更适合10~11岁的学生。这是因为教师可以通过隐喻形象地呈现逻辑关系,清晰具体地描述问题,图形化编程不强调复杂的代码编写功能,能够降低学生的记忆难度。
人工智能技术能帮助教师更好地构建支架和创设情境,从而将复杂的问题分解,引导学生逐步发现和解决学习中的问题。
北京大学学习科学实验室提出以培养计算思维为核心开展人工智能教学的理念,其中,“AI积木编程”系列课程采用了AISpark人工智能编程实验平台的人工智能功能模块。
人工智能的基本原理是晦涩难懂的,该平台却以智能语音、智能翻译等技术构建的支架紧扣学习主题,并要求学生以小组协作的方式设计出一个创意作品,为学生对人工智能原理的学习铺设了阶梯。
计算思维测评结果发现,在智能技术的支持下,学生的计算思维技能有了明显提高。还有研究者关注性别差异,在基于人工智能的教学中使用了两种不同形式的记忆系统作为脚手架,并发现男生更多地受益于个人主义、动觉空间导向和基于操纵的脚手架活动,而女生更多地受益于小组协作的脚手架活动。
(四)案例研究
学习是一种复杂的心智活动,涉及背景和社会文化因素、学习者及其周围环境,强调知识的主要来源是社会实践活动。
学习常常发生在学生为达到某种目标或解决某个现实问题而进行的活动中。教师可通过综合性的社会实践案例,引导学生从多个角度探索和解决问题,从而达到培养学生计算思维的目的。
编程被认为是教授计算思维的最佳方法,但实际上,部分学生面临着学习编程语言的挑战。在编程学习困难者面前,编程不一定能有效地培养他们的计算思维。
社会文化教学理论认为,学习是一套复杂的活动,涉及背景、社会文化因素、学习者及其周围环境。因此,计算思维的发展可以被描述为一个学生进入实践社区的过程,其中专家位于社区的中心。
在这个过程中,学生能够分享经验、概念、情境和实践,积极参与并解决问题;学生能够基于PBL练习开发解决方案,将与计算思维技能相关的概念转换为经验。
例如,有教师通过智能机器人模拟购物环境培养学生的计算思维——他创设了生活化的虚拟超市环境,提供智能机器人的视频资料,引导学生思考并绘制出机器人的购物路线和流程图。
学生以小组为单位编写机器人购物的程序,交流展示作品,在反思经验的基础上优化作品,将所学应用于实际生活中解决现实问题。这也表明,计算思维符合维果茨基提出的社会文化教育愿景,使学生能够在PBL情境下积极参与社会互动。