潘成华——CRUX(BONUS)问题B71另解


人梯巧搭登攀路,心血勤浇栋梁材



潘成华数学工作室

潘成华数学工作室——解答中等数学上一道几何题

潘成华——另证一个三元不等式

潘成华——2017年摩尔多瓦不等式另证

潘成华数学工作室学员——2020年泰国奥林匹克不等式解答

黄锦锐——解答一个几何不等式

潘胤旭——证明Gerretsen不等式

潘成华数学工作室学员——一个不等式的多种证法

潘成华数学工作室初三女学员——解答一个不等式

潘成华——2020年摩尔多瓦IMO选拔赛不等式

潘成华数学工作室初三女学员——解答一个不等式

潘成华数学工作室初二学员——解答叶中豪老师几何题

潘成华——2017年伊朗数学奥林匹克几何题解答

潘成华——数学奥林匹克训练题(381):一道新编几何题

潘成华——数学奥林匹克训练题(378):一道新编几何题

严彬玮——解答一道几何题

詹子鹏、黄梓洵——解答一道几何不等式

潘成华——证明一个三元条件不等式

潘成华——竞赛生每日一题(357):一道自编几何题

潘成华——单墫老师几何题两个解答

潘成华——老题新证

潘成华数学工作室——解答一道几何题

潘成华数学工作室——张云勇教授征解题解答

潘成华数学工作室——解答一道几何题

潘成华数学工作室——解答许康华老师的不等式

唐晨皓——解答2018年9月根源杯几何题

潘成华——竞赛生每日一题(263):一道新编几何题

徐在宥——2020年5月根源杯考试一道题的解答

潘成华,徐在宥——竞赛生每日一题261解答

唐晨皓,黄梓洵——2018年“根源杯”数学奥林匹克邀请赛五月几何题的两个解答

潘成华——竞赛生每日一题255解答

潘成华数学工作室——竞赛生每日一题252解答

潘成华——证明一个三元不等式

戴熙越——解答一道几何题

黄梓洵,黄翔庭——中等数学奥林匹克高657和高649解答

潘成华——MR数学杂志2020第二期问题(高中组)516解答

于浩洋——MR杂志2020第2期问题(高中组)512解答

潘成华数学工作室——2018年乌克兰数学奥林匹克一个不等式简证

潘成华——竞赛生每日一题(236):一道新编几何题

潘成华数学工作室——加拿大CRUX数学杂志4535解答

潘成华,杨阳——竞赛生每日一题232两个解答

潘成华——竞赛生每日一题(232):一道新编几何题

李心宇——韦东奕不等式的证明

潘成华数学工作室学员解答一个三元不等式

潘成华数学工作室——解答一道几何题

詹子鹏——解答一道几何题

潘成华数学工作室——竞赛生每日一题(219):一道新编几何题

潘成华数学工作室——竞赛生每日一题217解答

解答2019哈佛-麻省理工数学竞赛几何题

潘成华——竞赛生每日一题(217):一道新编几何题

潘成华——解答一道新编几何题

潘成华——竞赛生每日一题(214):一道新编几何题

严彬玮——竞赛生每日一题210解答

詹子鹏——竞赛生每日一题210又一解答

俞然枫——解答万喜人老师一道新编几何题

潘成华——蝴蝶定理解答一道几何题

唐晨皓——竞赛生每日一题205解答

唐晨皓,尹子彧——竞赛生每日一题204解答

潘成华数学工作室——面积方法解答一道平面几何题

李心宇——一道代数加强题目的解答

李浩铖,唐晨皓——一道新编几何题的解答

潘成华——解答一道网传几何题

丁力煌——解答2016年哈佛-麻省理工数学竞赛几何题

吴雨桐——解答潘成华老师一道新编几何题

邱宸豪——一个不等式的另证

严彬玮——证明一个三角不等式

夏一航——解答潘成华老师一道新编几何题

邱宸豪,詹子鹏——一个三角不等式的两个解答

潘成华数学工作室学员解答的一道几何题

严彬玮——一个四元条件不等式的证明

潘成华数学工作室学员解答的一道几何题

邱宸豪,冯建波——竞赛生每日一题194的两个解答

吴雨桐——解答2012年土耳其奥林匹克几何题

夏一航——解答一道几何题

俞然枫——解答一道几何题

潘成华数学工作室学员解答杨运新老师一道几何题

丁力煌——一道2008美国数学奥林匹克国家队选拔考试题的解答

罗千雅,李浩铖——一个三角不等式的两个证明

丁力煌——2015年解答的一道IMO几何题

严彬玮——竞赛生每日一题187解答

李心宇——解答江苏省数学集训队一道数论题

詹子鹏——2019年拉普拉塔河数学奥林匹克一道数论题解答

潘成华——解答一道新编几何题

李心宇——证明一个四元不等式

严彬玮——解答一道几何不等式

戴熙越——证明一个三角不等式

黄梓洵——解答杨运新老师一道几何题

严彬玮——一个不等式的证明

严彬玮,方星竹——竞赛生每日一题181的两个解答


(0)

相关推荐

  • 加拿大CRUX杂志问题4471-4480

    在本公众号后台输入CRUX2019, 可下载2019年CRUX杂志合集. 注:最近有朋友在问我有没有美国数学月刊(The American Mathematical Monthly )的电子版,那个在 ...

  • 加拿大CRUX杂志问题4551-4560

    更正:4551"周长"应为"外接圆半径" 这期的收稿截止日期是2020年9月15日,您如果在此之前做出本期的某些题目,建议向CRUX杂志投稿.请勿在此日期前公开 ...

  • 加拿大CRUX杂志问题4501-4510

    题目源自新鲜出炉的CRUX杂质2020年1月刊. 点击"阅读原文",可以查看英文原文. 老子在道德经中有这么一段话: 希言自然.故飘风不终朝,骤雨不终日.孰为此者?天地.天地尚不能 ...

  • 加拿大CRUX杂志问题4451-4460

    这套题目选自2019年CRUX杂志8月刊,在2020年CRUX一月刊上刊有全部解答. 老子在道德经中有这么一段话: 希言自然.故飘风不终朝,骤雨不终日.孰为此者?天地.天地尚不能久,而况于人乎?故从事 ...

  • 加拿大CRUX杂志问题4461-4470

    感谢龙崎钢老师一直以来的指导和帮助,尤其是推荐我翻译CRUX杂志已发行刊次的问题. 这套题目选自2019年CRUX杂志9月刊,在2020年CRUX二月刊上刊有全部解答. 笔者认为, 4463比较好玩. ...

  • 加拿大CRUX杂志问题4511-4520

    总的来说,CRUX二月这期的十道题是比较让人失望的.几道平几题和代数题都很平凡,4513还是错题.笔者认为,可能跟加拿大3月12日马上要举办CMO和CJMO,编辑们分身乏术有关系.希望我们在CMO和C ...

  • 加拿大CRUX杂志问题4531-4540

    这期质量明显高于上一期,我很喜欢4538和4540这两道题. 为避免侵犯CRUX杂志的版权,声明如下: 这期的收稿截止日期是2020年6月15日,您如果在此之前做出本期的某些题目,建议向CRUX杂志投 ...

  • 张云华——CRUX(BONUS)问题B71另证

    特级教师--张云华 张云华专集 2021-01-22   2017年土耳其EGMO不等式试题证明 2021-01-21   <数学爱好者通讯>第148期问题研究A解 2020-12-21  ...

  • 潘成华数学工作室专集

    才女严彬玮 欧阳曹容--四年级学生解答一道几何题 罗悠然--叶中豪老师一道几何题的解答 潘成华--Mathematical Reflections 2(2021)S552题另证 刘萱暄--另证2020 ...

  • 潘成华——Mathematical Reflection 2021第三期征解题解答

    点击底端"阅读原文",进入"许康华竞赛优学推荐浙大出版社优秀图书". 人梯巧搭登攀路,心血勤浇栋梁材 Mathematical Reflection 2021第 ...

  • 潘成华——数学奥林匹克训练题(402):一道新编几何题

    点击底端"阅读原文",进入"许康华竞赛优学推荐浙大出版社优秀图书". 人梯巧搭登攀路,心血勤浇栋梁材 数学奥林匹克训练题(402):一道新编几何题 潘 成 华 ...

  • 潘成华、程千弘——​2021年马其顿数学奥林匹克几何题解答

    人梯巧搭登攀路,心血勤浇栋梁材 --程千弘同学与潘成华老师 2021年马其顿数学奥林匹克几何题解答 潘成华     程千弘(广东省实验中学初二南山班) 潘成华数学工作室专集 潘成华--数学奥林匹克训练 ...

  • 潘成华——Mathematical Reflections 2(2021)S552题另证

    人梯巧搭登攀路,心血勤浇栋梁材 Mathematical Reflections 2(2021)S552题另证 潘 成 华 潘成华数学工作室 刘萱暄--另证2020年摩尔多瓦IMO选拔赛不等式 潘成华 ...

  • 潘成华——证明一个n元不等式

    103282699@qq.com,1090841758@qq.com 许康华老师联系方式:微信(xkh3122):QQ(1090841758) 人梯巧搭登攀路,心血勤浇栋梁材 证明一个n元不等式 潘 ...

  • 潘成华、程千弘、刘萱喧——安振平老师博客问题6024三个解答

    青出于蓝而胜于蓝--程千弘与潘成华老师 安振平老师博客问题6024三个解答 潘 成 华     程千弘[1]     刘萱喧[2] [1]广州实验中学初二       [2]南师附中高一 潘成华数学工 ...

  • 潘成华数学工作室学员——解答一道四元不等式

    人才济济--潘成华老师与学生在一起 浙江大学出版社 举办第一届初中数学名师论坛信息 [线上直通车]逐梦数学·第一届初中数学名师论坛(文末附直播观看方式) [线下讲座+线上直播]逐梦数学·第一届初中数学 ...