【Lagrange 乘子】图解高等数学-下 15

11.8 Lagrange 乘子

如果是求定义域内约束在某个区域内函数的极值, 可以用本次讲述的 Lagrange乘子法.

约束最大值和最小值

观察下面函数 f(x,y)=49-x2−y249-x2−y2 受约束 g(x,y)=x+3y-10=0 的图形.

求双曲柱面 x2−z2-1=0x2−z2-1=0 上到原点最近的点的一个方法是设想中心在原点的球面不断膨胀, 直到刚刚接触到柱面. 此时柱面和球面有同样的切平面和法线.

Lagrange 乘子法

若函数 f(x,y,z) 的变量受约束 g(x,y,z)=0限制, 函数的极值可以用下面Lagrange乘子法求出.

现在看函数 f(x,y)= x y 在椭圆 x28+y22=1x28+y22=1 上的最大值和最小值, 现在看下解的几何解释. f(x,y)=x y 的等高线图是双曲线 x y=c , 如下:

从上图可是双曲线离开原点越远, f 的绝对值越大. 需要在约束条件下 - 椭圆 x2+4y2=8x2+4y2=8 上使 f(x,y) 取极值点. 也就是刚刚与椭圆相切的双曲线会距离原点最远, 在这四个切点中, 双曲线的法线也是椭圆的法线. 观察下图动画, 可以看到黑色 "▽f"是 "▽g"的数值倍数.

带两个约束条件的 Lagrange 乘子法

如果是两个约束限制的可微函数求极值, 这里 g1(x,y,z)=0 和 g2(x,y,z)=0, 可微且梯度向量不平行. 可以通过引进两个 Lagrange乘子 λ 和 μ, 通过求解下面方程中的 x,y,z,λ,μ 值来求出极值点的位置:

曲面 g1=0 和 g2=0 通常会相交于一条曲线 C. 沿着这条曲线寻找 f 相对于曲线上其他值的极大值和极小值的点.

例如下面例子中平面 x+y+z=1 (g1)相交于圆柱 x2+y2=1x2+y2=1 (g2) 为一个椭圆, 求这个椭圆上离原点最远的点. 观察 ▽g1 正交于平面 x+y+z=1, 而 ▽g2 正交于曲面x2+y2=1x2+y2=1, 向量 ▽g1 和 ▽g2 位于垂直与椭圆曲线的 C (下图红色)的平面内. 并且 ▽f 也正交于 C, 且在 ▽g1 和 ▽g2 决定的平面内, 这意味这对于某个 λ 和 μ 有 ▽f = λ ▽g1 + μ ▽g2. 观察下图来更好理解:

(0)

相关推荐

  • 第20讲 典型例题与练习参考解答:曲线的凹凸性与分析作图法

    本文对应推文内容为: 第20讲:曲线的凹凸性与分析作图法 [注]相关推文可以直接参见公众号底部菜单"高数线代"中的"高等数学概率其他"选项,在打开的高等数学面板 ...

  • 数与图(13)——画双曲线

    在上一篇<数与图(12)--画椭圆>中,我们绘制了8个椭圆(其中一个是圆),并标注了8个椭圆的焦点,因为设定了b≤a,因此焦点在x轴上.从测试结果中观察到,当a不变时,b的减小导致焦点远离 ...

  • 修订 |《图解高等数学 - 下》 合集

    2018.12.11 更新修订后的03<笛卡尔坐标/点积/叉积>.04<空间中的直线和平面>两节的文章最新链接. 高数下这部分内容是 [遇见数学] 基于<托马斯微积分&g ...

  • 修订 |【空间中的直线和平面】图解高等数学 -下 04

    2018.11.26   补充了直线一般方程.平面束方程的图像动画, 修改了文章格式 10.3 空间中的直线和平面 在一元微积分中, 应用了直线(切线)的知识研究平面曲线: 可微曲线是充分线性的. 现 ...

  • 修订 |【笛卡尔坐标/点积/叉积】图解高等数学-下 03

    2018.11.23 补充更新了向量部分内容, 版面做了调整. 10.  空间中的向量和运动 当一个物体在空间中运动时, 其坐标方程 x=f(t), y=g(t), z=h(t) 提供了物体运动和路径 ...

  • 《图解高等数学 - 下》 合集

    高数下这部分内容是 [遇见数学] 基于<托马斯微积分>一书结构所制作的.尽管我花了很长时间来编写动画程序,但最终出来的成品很多连自己都不甚满意.不过考虑来去暂且先把第一个版本树立起来作为靶 ...

  • 【散度定理】图解高等数学-下 28

    散度定理 二维平面 Green 定理 - 散度法向形式说的是, 在向量场中穿过简单闭曲线的向外流量可以通过下式做积分求得散度: 类似在三维空间中的散度定理就是指, 在三维向量场中穿过一闭曲面的向外净流 ...

  • 【Stokes 定理】图解高等数学-下 27

    13.7 Stokes 定理 Stokes 定理告诉我们, 三维空间中的曲面边界上的线积分等于向量场函数旋度在法向分量的曲面积分. 环量密度: 旋度 之前看到在二维空间中向量场 F = Mi + Nj ...

  • 《图解高等数学 - 下》 1 ~ 26 合集

    高数下部分[遇见数学] 是基于<托马斯微积分>一书所编程制作的图解系列文章,计划还余几节就可以整理完毕了,这里先将之前做一个合集方便朋友们查询. 1 ~ 26 内容及链接 1. 平面向量/ ...

  • 【参数化曲面】图解高等数学-下 26

    13.6 参数化曲面 空间曲面定义有 3 种方式; 显示: z = f(x,y) 隐式: F(x,y,z) = 0 参数化曲面: r(u,v) = f(u,v)i + g(u,v)j + h(u,v) ...

  • 【曲面面积和曲面积分】图解高等数学-下 25

    13.5 曲面面积和曲面积分 计算曲面积分的技巧是要将其转换成平面区域的二重积分. 曲面面积 观察下图曲面 S 以及它的垂直投影. 将所有小平面分割近似所有的小区面, 这样就构成了曲面 S , 因此其 ...