没有想到就这样就发了6.68分的SCI

文章题目:Development and validation of a prognostic nomogram for HIV/AIDS patients who underwent antiretroviral therapy: Data from a China population-based cohort

文章摘要:

BACKGROUND:

Accurate forecast of the death risk is crucial to the administration of people living with HIV/AIDS (PLHIV). We aimed to establish and validate an effective prognosis nomogram in PLHIV receiving antiretroviral therapy (ART).

METHODS:

All the data were obtained from 2006 to 2018 in the Wenzhou area from China AIDS prevention and control information system. Factors included in the nomogram were determined by univariate and multiple Cox proportional hazard analysis based on the training set. The receiver operating characteristic (ROC) and calibration curves were used to assess its predictive accuracy and discriminative ability. Its clinical utility was also evaluated using decision curve analysis (DCA), X-tile analysis and Kaplan-Meier curve, respectively in an independent validation set.

FINDINGS:

Independent prognostic factors including haemoglobin, viral load and CD4+ T-cell count were determined and contained in the nomogram. Good agreement between the prediction by nomogram and actual observation could be detected in the calibration curve for mortality, especially in the first year. In the training cohort, AUC (95% CI) and C-index (95% CI) were 0.93 (0.90, 0.96) and 0.90 (0.85, 0.96), respectively. In the validation set, the nomogram still revealed excellent discriminations [AUC (95% CI): 0.95 (0.91, 1.00)] and good calibration [C-index (95% CI): 0.92 (0.82-1.00)]. Moreover, DCA also demonstrated that the nomogram was clinical beneficial. Additionally, participants could be classified into three distinct (low, middle and high) risk groups by the nomogram.

INTERPRETATION:

The nomogram presents accurate and favourable prognostic prediction for PLHIV who underwent ART.

分析内容主要如下(都是常见的分析内容):

● 快速抢发3+SCI

● 国自然|博硕研究生开题课程重磅发布

● VIP会员免费领取价值数万元的课程

● SCI狂人团队VIP会员

● 关于答疑时间的通知

● 如何通过数据挖掘,发现癌症治疗的靶标?

● 想不到课题?不存在的

● 论文修回后是否再次回到审稿人手中?取决于你的回复

● 数据挖掘特训上线

● 这样的文章,谁都可以做到呀

● R代码很容得到,关键是数据不会准备,遇到问题看不懂

● 如何快速找到值得深入研究的分子?

● 一大波科研软件免费下载

● 作为临床医生,不能总靠生信发文章吧?

● 公共数据库找不到自己需要的数据,该咋办?

● 躺着也可以轻轻松松得到5篇SCI

● 学员报喜,再度发表两篇SCI

● 火山图的高级玩法

● VIP会员专属课程再次上线

● 在GEO数据库随便找一张芯片就可以发SCI?

● 手把手教你利用WGCNA发文章

● Look, 搞一篇SCI so easy!!!

● 如何快速找到值得深入研究的分子?

● SEER数据挖掘这样玩才过瘾的

● 急!急!急!快来抢发这个数据库

● 只会用TCGA构建ceRNA你就out了

● WB一图多用,有多么严重?

● 这10个期刊也许是你想要的

● 甲基化跑不动,我们帮你跑

● 如何快速学习贝叶斯网状meta分析?

● 如何搞一张漂亮的列线图?

● 如何快速学习GEO数据挖掘?

● 这种发文套路,完全是看数据吃饭的

● 多张芯片数据合并视频(免费送)

● 环状RNA数据挖掘课程上线了

● TCGA数据下载再也不会难到你

● 如何绘制两个模型的ROC,并且进行比较?

● 临床预测模型快速入门课程

● GO富集分析这种图,你也可以呀

● GEO数据挖掘的深度不够,有没有提高GEO数据挖掘的深度的方法呢?

● 10篇SCI还不如一个英语成绩好的临床医生好找工作?

● 批量挖掘TCGA让发文速度更加快

● 批量挖掘TCGA临床数据的机会来了

● 批量挖掘TCGA miRNA

● 医生朋友,非肿瘤方向也可以进行临床预测模型呀

● SEER数据新玩法,你还不来看看

(0)

相关推荐