阿尔茨海默病实验动物模型利弊大盘点
狨猴Callithrix jacchus,生长10-12年就会变老,远远快于其他灵长类动物(20-30年),是阿尔茨海默病研究越来越受欢迎的非人灵长类动物。
人类衰老机制研究和抗衰老药物筛选的重要手段是选择合适的衰老动物模型。应用衰老动物模型对AD进行实验研究具有一定的代表意义。在实验研究中应用的衰老动物模型主要有自然衰老动物模型和快速老化动物模型。
自然衰老模型
快速老化模型
日本京都大学竹田俊男教授在 1968 年培育出快速老化小鼠(SAM),在此基础上又于 1975 年培育出易快速老化系小鼠(SAMP)和抗快速老化系小鼠(SAMR)。其中 SAMP8 小鼠在学习记忆减退、神经递质改变、APP代谢异常、Aβ沉积等方面表现出与年龄相关的AD临床特征,一致认为是研究 AD 最好的动物模型。SAMP8小鼠的一般生存时间为10~12个月,在6个月龄之后进入老化加速期。在月龄相同情况下,SAMR1小鼠表现出抗痴呆特征,在实验研究中一般作为SAMP8 鼠的对照。快速老化小鼠具有饲养周期短,衰老特征明显的优点,但快速老化小鼠相比其他模型小鼠价格较贵,且SAM 动物繁殖能力较弱,相对来源较少,具有一定的局限性。
AD转基因小鼠的构建。Tg小鼠是通过获取单细胞胚胎并将修饰或构建的相关基因插入胚胎的雄性细胞核而产生的。然后将胚胎植入一只假孕小鼠体内,由此产生的后代携带感兴趣的突变蛋白,从而建立了一个正在研究的疾病模型。转基因小鼠可以培育出一种作为人类疾病模型的小鼠。
·PDAPP 小鼠模型·
转人类 APP695swe 和 APP717V-F 基因的PDAPP 小鼠模型是由 C57BL/6 鼠与DBA/2F1鼠杂合而生。PDAPP小鼠APP 表达水平高,6~9 月龄时在模型小鼠大脑多区域表现出与AD相似的病理表现,如细胞外Aβ异常沉积、突触丢失、神经炎症反应和小胶质细胞增生等,但 NFTs 形成不明显。由于PDAPP 小鼠在同月龄脑中Aβ沉积异常,主要用于与Aβ相关的AD疾病机制研究。
双转基因模型
APP/PS1/Tau 三转因模型
APP/PS1/Tau 三转基因小鼠模型是由APPSwe、PS1、TauP301L基因系突变建立的,首先在皮质区和出现Aβ异常沉积、SP 和NFTs 形成,随后海马区也逐渐出现 Aβ沉积、SP和NFTs,以及突触丢失、神经元变性AD临床病理表现。APP/PS1/Tau三转基因小鼠模型是目前与AD 病理特征最为接近的转基因动物模型,但其外源性基因表达稳定性较差、造模较困难且造价高。
5XFAD转基因模型
5XFAD小鼠在小鼠Thy1.2启动子的控制下过度表达人类APP和PSEN1蛋白,共有5个AD连锁突变,分别是APP中的瑞典(K670N/M671L)、佛罗里达(I716V)和伦敦(V717I)突变,以及PSEN1中的M146L和L286V突变。1.5个月大的5XFAD小鼠就开始出现Aβ 沉积。5XFAD小鼠在大脑中积累的Aβ42多于Aβ40,这表明5个FAD突变累积影响Aβ42的产生。然而,在5XFAD小鼠中未观察到tau过度磷酸化和NFTs的形成。2个月大时出现星形胶质细胞增生和小胶质细胞增生,表明神经炎症发生在该模型早期。5XFAD小鼠再现了人类AD的病理学,类似于Tg2576、APP23和APPPS1模型。
动物脑血流量老年期较成年期减少20%以上,脑部慢性缺血、缺氧使脑的正常功能受损,出现认知功能障碍等AD 病理性改变。由此理论在实验研究中通过永久结扎双侧颈总动脉血管(2VO)建立的缺血性痴呆动物模型,表现出认知功能障碍明显,淀粉样蛋白前体升高、神经元和脑细胞死亡、tau 蛋白过度磷酸化、氧化应激反应和产生慢性炎症等 AD 病理特征。该动物模型病程较长,在行为学表现上如认知功能障碍与AD比较一致,病理上也高度相似,但引起AD 的外因在该动物模型中不能体现出来,另外,2VO 动物模型手术操作具有一定难度,模型复制后动物存活率低且时间短,不适合给药周期长的实验研究。另外,还有永久性结扎单侧颈总动脉、去胸腺衰老模型和γ射线致衰老模型、控制性皮质撞击模型、液压脑损伤模型等,由于这些模型在造模方法上复杂、难度高、造模后动物容易死亡、且结果不理想,仅在个别特殊目的实验中有所应用。
Aβ 诱导模型
Aβ 诱导模型是通过在海马CA1区或者侧脑室多次注射Aβ片段诱发Aβ 沉积、形成SP为主要病理特点的AD动物模型。Aβ诱导的AD动物模型脑内 Aβ 沉积明显、Aβ斑块周围星形胶质细胞增生,行为呆滞,易卧,学习记忆能力衰退,出现认知功能障碍、体能衰减明显等 AD 病理表现。Aβ诱导动物模型,影响因素单一,模型形成时间长,造模过程中,有对脑组织造成穿透性损伤的不确定性,另外,由于注射部位过于集中,使Aβ 沉积部位与AD患者Aβ 在脑内多区域分布有所不同。
东莨菪碱诱导模型
东莨菪碱(SCOP)为胆碱能拮抗剂,通过腹腔注射SCOP引起模型动物胆碱能系统功能障碍引起由于氧化应激增加的认知能力的下降。由SCOP 诱导的痴呆模型被认为是揭示AD相关认知功能障碍的理想痴呆模型和金标准。由于此种模型造模方法简单、费用相对较少、所以在对AD认知功能研究中应用比较广泛,缺点是动物模型缺乏AD神经元变性、Aβ沉积等典型病理改变。
IBO 诱导模型
IBO 能对大脑产生毒性作用。特别是对大脑神经元的毒性作用最大,可以导致脑内 SP 沉积,行动呆慢,学习记忆能力衰退等病理表现。将IBO注入ChE传递和学习记忆能力的主要位Meynert基底核,通过谷氨酸受体特异激动胆碱能神经元引起神经元损伤、ACh 含量和ChAT活性降低,信号通路随之调节异常,认知功能障碍等。在实验研究中,IBO联合Aβ 复制AD动物模型其临床病理特征更明显。
STZ 诱导模型
在AD患者脑内由于胰岛素分泌异常形成SP和NFT。据此,通过在动物侧脑室注射链脲菌素(STZ)破坏脑部的糖和能量正常代谢,使动物的学习记忆能力衰退,认知功能出现障碍等AD的病理特征。少量STZ影响神经元活性,引起行为学改变、认知功能障碍、能量代谢加速、Aβ异常沉积、胆碱能缺失、tau 蛋白过度磷酸化等。STZ诱导模型与阿尔茨海默病的普遍特征相符,但由于注射部位在脑,操作难度相对较大,模型复制后动物的存活率相对较低,且模型复制时间相对比较长。
D-半乳糖模型
D-半乳糖(D-galactose,D-gal)是一种还原单糖,使组织渗透压升高、产生氧化应激和炎症反应,促进神经衰老的发生和发展。通过皮下连续注射D-gal 建立亚急性衰老动物模型,导致认知功能和胆碱能功能障碍,产生氧化应激和神经炎症反应,海马区 tau 蛋白过度磷酸化。D-gal 衰老模型与自然衰老模型相比造模时间短、与SAM 模型相比具有价格低、结果可靠稳定,有自然衰老动物模型在氧化损伤、神经行为学以及病理形态方面的病理特征等的优点,在实验研究中应用较多。但其缺点是在生化分析中与自然衰老动物模型具有一定的差异,现在多与铝中毒诱导模型联合应用。
OKA 诱导模型
通过在大鼠脑内不同位点注射蛋白磷酸酶的选择性抑制剂 OKA 诱导 Tau 蛋白发生过度磷酸化复制 AD 动物模型,出现 ACh 活性和表达异常的神经递质系统功能障碍引起的认知功能缺陷。表现出与临床 AD 病人脑组织中的病理特征相似性。
尽管APP-Tg小鼠在过去十几年中广泛被用于开发新的AD治疗策略,但这种小鼠的基因表型和AD患者的还是不同。而且上述的转基因动物模型在Aβ的生成、tau蛋白的过度磷酸化、神经纤维缠结等病理特征上和AD患者的差异也很大,无法理想地模拟AD患者。为了克服这些不希望出现的问题,研究人员构建了带有Swedish(KM670/671NL)、Beyreuther/Iberian(I716F)和Arctic突变等APP基因敲入(APP-KI)小鼠。APP-KI小鼠在没有过度表达APP的情况下生成Aβ42。随着年龄的增长,APP-KI小鼠大脑皮层和海马区出现过多的Aβ沉积。另一方面,与其他AD模型一样,该模型没有tau病理、NFTs、神经退行性变或大量神经元丢失可用于研究临床前AD。由于基因组编辑的最新进展,尤其是CRISPR/Cas技术,未来对转基因动物模型进行改良也值得期待。
参考文献
1. Neff, E.P. Animal models of Alzheimer’s disease embrace diversity. Lab Anim 48, 255–259 (2019).
2. Nakai T, Yamada K, Mizoguchi H. Alzheimer’s Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for Cognitive Impairment[J]. International Journal of Molecular Sciences, 2021, 22(11): 5549.
3. Vitek M P, Araujo J A, Fossel M, et al. Translational animal models for Alzheimer's disease: An Alzheimer's Association Business Consortium Think Tank[J]. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 2020, 6(1): e12114.
4. Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality[J]. Acta neuropathologica, 2017, 133(2): 155-175.