DL之HNN:基于HNN(subplot)将凌乱数字矩阵图像(模拟手写数字图片)实现转为最相近的阿拉伯数字
DL:基于HNN将凌乱数字矩阵图像(模拟手写数字图片)实现转为最相近的阿拉伯数字
输出结果
代码设计
#DL:基于HNN将凌乱数字矩阵图像(模拟手写数字图片)实现转为最相近的阿拉伯数字
import numpy as np
import neurolab as nl
import matplotlib.pyplot as plt
# 012数字形矩阵————————16*8改为6*5
target=np.array([[0, 1, 1, 1, 0,
1, 0, 0, 0, 1,
1, 0, 0, 0, 1,
1, 0, 0, 0, 1,
1, 0, 0, 0, 1,
0, 1, 1, 1, 0],
[0, 1, 1, 0, 0,
0, 0, 1, 0, 0,
0, 0, 1, 0, 0,
0, 0, 1, 0, 0,
0, 0, 1, 0, 0,
0, 0, 1, 0, 0],
[1, 1, 1, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 1, 0,
0, 1, 1, 0, 0,
1, 0, 0, 0, 0,
1, 1, 1, 1, 1]])
test_data0=np.asfarray([0, 0, 1, 1, 0,
1, 0, 1, 0, 0,
1, 0, 0, 0, 1,
1, 0, 1, 0, 0,
1, 0, 0, 0, 1,
0, 1, 0, 1, 1])
test_data1=np.asfarray([0, 1, 1, 0, 0,
0, 0, 0, 0, 0,
0, 1, 1, 0, 0,
0, 0, 0, 0, 1,
1, 0, 1, 0, 0,
0, 0, 1, 0, 0])
test_data2=np.asfarray([1, 0, 1, 0, 0,
0, 0, 0, 1, 0,
1, 0, 0, 1, 0,
0, 1, 1, 0, 1,
1, 0, 0, 0, 1,
1, 0, 0, 1, 0])
……
ax6.imshow(out0,cmap=plt.cm.gray, interpolation='nearest')
ax6.set_title("after HNN") #DL: Based on HNN, turn to the closest Arabia number 0
ax7.imshow(out1,cmap=plt.cm.gray, interpolation='nearest')
ax7.set_title("after HNN")
ax8.imshow(out2,cmap=plt.cm.gray, interpolation='nearest')
ax8.set_title("after HNN")
fig.tight_layout() #轴域的位置自动调整
plt.suptitle("DL: Based on HNN, turn to the closest Arabia number By Jason Niu") #设置总图标题
plt.show()
相关文章推荐
GitHub
赞 (0)