Day15: Don’t put all your eggs in one basket

(Friday)

各位书友,今天我们一起阅读《Zero to One》第七章FOLLOW THE MONEY的87-92页。

思考问题:

Why would professional VCs, of all people, fail to see the power law?

为什么专业的风险投资家没有看到幂次法则?

欢迎大家给后台留言,文字语音都可以,中文英文均不限。
你的每一条留言对于我们都很重要!*3

英语共读编辑团队在后台等您来!在后台等您来!等您来!

01  WHY PEOPLE DON’T SEE THE POWER LAW

为什么人们没有看到幂次法则

Why would professional VCs, of all people, fail to see the power law? It only becomes clear over time, and even technology investors too often live in the present.

为什么专业的风险投资家没有看到幂次法则?一是因为幂次法则要经过一段时间后才能清晰地显示出来,甚至科技投资者也通常活在当下,不能预知未来。

Imagine a firm invests in 10 companies with the potential to become monopolies—already an unusually disciplined portfolio. Those companies will look very similar in the early stages before exponential growth.

设想一下,一家投资公司投资了10 家有潜力成为垄断者的企业——这本身就已经是一种少见的相当有纪律的投资组合。那些公司在呈指数级增长前的早期阶段十分相似。

Over the next few years, some companies will fail while others begin to succeed; valuations will diverge, but the difference between exponential growth and linear growth will be unclear.

在接下来的几年中,一些公司会失败,一些会成功;估值也会改变,但是指数级增长和线性增长之间的不同并不明显。

After 10 years, however, the portfolio won’t be divided between winners and losers; it will be split between one dominant investment and everything else.

但是,10 年后,投资组合里不再被分成成功和失败的投资,只会被分成一项主要投资和其他投资。

But no matter how unambiguous the end result of the power law, it doesn’t reflect daily experience.

但是不管幂次法则的结果多明显,都无法反映出日常的经验。

Since investors spend most of their time making new investments and attending to companies in their early stages, most of the companies they work with are by definition average. Most of the differences that investors and entrepreneurs perceive every day are between relative levels of success, not between exponential dominance and failure. And since nobody wants to give up on an investment, VCs usually spend even more time on the most problematic companies than they do on the most obviously successful.

因为投资者把他们大部分的时间花在新的投资和初创公司的照料上,大多数他们参与经营的公司明显很普通。投资者和创业者每天能感知到的差异不部分来自成功程度的不同,而不是的绝对优势和失败之间的不同。而且没有人想要放弃一项投资,风险投资家在问题最多的公司耗费的时间往往比在最成功的公司耗费的时间多。

Power law distributions are so big that they hide in plain sight. If even investors specializing in exponentially growing startups miss the power law, it’s not surprising that most everyone else misses it, too.

幂次法则的分布很广,显而易见,却为人所忽略。如果专门研究以指数速度发展的初创公司的投资者都忽视了幂次法则,其他人忽视了也就没什么可惊讶的了。

02  WHAT TO DO WITH THE POWER LAW

利用幂次法则的作用

The power law is not just important to investors; rather, it’s important to everybody because everybody is an investor.

幂次法则不只对投资者很重要,它对每个人也很重要,因为每个人都是投资者。

An entrepreneur makes a major investment just by spending her time working on a startup. Therefore every entrepreneur must think about whether her company is going to succeed and become valuable.

一个创业者只要花时间打理一个初创企业,就是在做重要投资。因此每个创业者必须思考他的公司以后是否会成功、会有价值。

Every individual is unavoidably an investor, too. When you choose a career, you act on your belief that the kind of work you do will be valuable decades from now.

同样,每个人都是一个投资者。你之所以选择一份职业,是因为你相信自己选择的工作在今后的几十年中会变得很有价值。

The most common answer to the question of future value is a diversified portfolio: “Don’t put all your eggs in one basket,” everyone has been told. The kind of portfolio thinking embraced by both folk wisdom and financial convention, by contrast, regards diversified betting as a source of strength. The more you dabble, the more you are supposed to have hedged against the uncertainty of the future.

对于怎样保证未来价值这个问题,最普遍的回答是多样化的投资组合——“别把所有鸡蛋都放在一个篮子里”,每个人都被告知不要孤注一掷。投资组合的想法源于民间智慧和金融业惯例,而这些想法却认为最有利的做法是多元化下注。你投资的公司越多,在不确定的未来,你所承受的风险就越小。

As we said, even the best venture investors have a portfolio, but investors who understand the power law make as few investments as possible.

像我们所说的,甚至是最好的风险投资者都会列出投资组合,但是懂得幂次法则的投资者所列的要投资的公司会尽可能少。

But life is not a portfolio: not for a startup founder, and not for any individual. An entrepreneur cannot “diversify” herself: you cannot run dozens of companies at the same time and then hope that one of them works out well. Less obvious but just as important, an individual cannot diversify his own life by keeping dozens of equally possible careers in ready reserve.

但是人生对初创公司创建者和任何个人都不是投资组合。一个创业者不能把自身“多元化”:总不能同时运营十几家公司,然后期待其中一家会脱颖而出吧。而个人也不能为了人生多元化同时留住十几种可能性差不多的职业。

You should focus relentlessly on something you’re good at doing, but before that you must think hard about whether it will be valuable in the future.

你应该将全部注意力放在你擅长的事情上,而且在这之前要先仔细想一想未来这件事情是否会变得很有价值。

For the startup world, this means you should not necessarily start your own company, even if you are extraordinarily talented. If anything, too many people are starting their own companies today. People who understand the power law will hesitate more than others when it comes to founding a new venture: they know how tremendously successful they could become by joining the very best company while it’s growing fast.

这种想法用在初创公司上,就是即使你非常有才能,也未必要创建自己的公司。现在自己开公司的人太多了。懂得幂次法则的人在创建企业时会比其他人更犹豫:他们知道加入一个发展迅速的一流企业会获得更大的成功。

The power law means that differences between companies will dwarf the differences in roles inside companies. You could have 100% of the equity if you fully fund your own venture, but if it fails you’ll have 100% of nothing. Owning just 0.01% of Google, by contrast, is incredibly valuable (more than $35 millionas of this writing).

幂次法则意味着公司之间的差别会使公司内部角色的差别相形见绌。如果你创建自己的企业,你占有 100%的股权,一旦公司倒闭了你就赔上了所有。相反,如果你只拥有谷歌公司 0.01%的股权,最后获得的回报将令你难以置信(要超过 3 500 万美元。)

One more thing: you can’t trust a world that denies the power law to accurately frame your decisions for you, so what’s most important is rarely obvious. It might even be secret. But in a power law world, you can’t afford not to think hard about where your actions will fall on the curve.

你不能相信这个否定了幂次法则,而且阻止你用幂次法则做出准确决定的世界。最重要的事往往不能一眼就看出来,它甚至像个秘密不为人知。但是在幂次法则的世界中,如果你不认真想一想你的行动会使公司落在 80–20 曲线的什么位置上,后果你真的承担不起。

If you do start your own company, you must remember the power law to operate it well. The most important things are singular:

如果你已经开始运营自己的公司了,你必须谨记幂次法则,把公司运营好。最重要的事情都是独一无二的:

One market will probably be better than all others, as we discussed in Chapter 5.

一个市场可能会胜过其他所有市场——我们在第 5 章讨论过。

Time and decision-making themselves follow a power law, and some moments matter far more than others—see Chapter 9.

时机和决策也要遵循幂次法则,某些关键时刻远比其他任何时刻重要——请参阅第 9 章。

One distribution strategy usually dominates all others, too—for that see Chapter 11.

一种分销策略通常要优于其他所有策略——将会在第 11 章中介绍。

地道口语

Don’t put all your eggs in one basket.

别把所有鸡蛋都放在一个篮子里。

diversify

vt.& vi. 使多样化,多样化; 进入新的商业领域

例句:

Our company is trying to diversify.

我们公司正力图往多样化方面发展.

本月共读《Zero to One》英文版,长按图片立即加入!

☞ 领读达人:刘亚南

☞ 主播:Serena

☞ 设计:刘莹

☞ 编校:陈珺洁


—共读书籍简介—

《Zero to One》涉及哲学、历史、经济等多元领域,解读世界运行的脉络,分享商业与未来发展的落实。该书将帮助我们思考从0到1的秘密,在意想不到之处发现价值与机会。

值得关注的是,这本Zero to One》绝非学术讨论或者思想大师们的论战,自问世起,它的影响就迅速超越了投资圈,在美国亚马逊图书畅销总榜上跻身前列。


(0)

相关推荐

  • The ABC's of Google’s New Union

    Ever since I learned that unionizing was an option for workers like me, I knew I wanted to be a unio ...

  • 直线相关还是秩相关? | 30天学会医学统计与SPSS公益课(Day15)

    30天打卡学习医学统计与SPSS本课程是高校医学统计学教授的公益.免费公开课!如假包换!我将每天推送视频和文字教程,讲授基于医学数据的各种统计分析策略.如果你能跟得上节奏,我相信在一个月后,您将会掌握 ...

  • Day15/49《加速:从拖延到高效,过...

    Day15/49<加速:从拖延到高效,过三倍速度人生>读书笔记 第二章<认知管理> 15 观念管理 知识管理的终极命题 观念是我们对世界的主观和客观认识的集合,往小了说,它就是 ...

  • 日课|跟Jessie老师读海尼曼:G1-008 Eggs

    跟Jessie老师一起读海尼曼系列丛书 被国际评级机构NFER誉为最成功的儿童分级阅读丛书海尼曼Heinemann系列,分为GK.G1和G2三个系列共298本,分别由橙色体系.绿色体系及蓝色体系代表. ...

  • 廖单绘本介绍: Green Eggs and Ham

    今天要介绍的是廖单中的一本英文绘本:Green Eggs and Ham(绿鸡蛋与火腿),也是Dr. Seuss(苏斯博士)的著名作品,我们在前面介绍过他的作品Hop on Pop (在爸爸身上蹦来跳 ...

  • 【四月晨读——怦然心动】Day15

    视频版☟ 音频版☟ 老师讲解版☟ 剧情简介: 朱莉·贝克虔诚地相信三件事:树是圣洁的(特别是她最爱的梧桐树).她在后院里饲养的鸡生出来的鸡蛋是最卫生的.以及总有一天她会和布莱斯·罗斯基接吻.二年级时在 ...

  • 一年级经典英文绘本分享《Green Eggs and Ham》

    绘本简介: <Green Eggs and Ham>的创作源于Dr.Seuss(苏斯博士)和朋友打赌,用50个单词写一个故事,于是这部简单有趣的故事,成了Dr.Seuss的经典作品之一.故 ...

  • 英语分级听力|煎鸡蛋 Fried Eggs

    Cynthia decided to make eggs for her daughter's birthday because it is her favorite food. She woke u ...

  • 今日秦书day15:不经意间

    在每天的生活中,"不经意间"会遇到一些人,也会遇到一些事,说机缘巧合也是可以的.机缘,似乎就是机会与缘分的混合体.一般来说,它的出现具有不可预料性,也正因此,它的出现往往颇有惊喜之 ...

  • 30天学会医学统计与SPSS公益课程(Day15): 相关分析方法

    30天打卡学习医学统计与SPSS本课程是高校医学统计学教授的公益公开课!如假包换!我将在公众号每天推送一篇文章,讲述基于不同医学研究类型的各种统计分析策略.诸位可以结合视频.SPSS操作录屏.文字版教 ...