广谱抗白粉病基因mlo
1997年,英国John Innes Centre Sainsbury实验室和德国马克斯普朗克植物育种研究所合作图位克隆了mlo。他们在Hinze et al. (1991)工作基础上,利用大麦品种CarlsbergII(Mlo)和G. Zweiz(mlo-11)构建的包含70个单株的F2群体筛选AFLP标记,构建了AFLP标记遗传连锁图谱,并利用mlo两侧AFLP标记筛选Ingrid(Mlo)和BC7 Ingrid(mlo-3)构建的包含2,022个单株的F2精细作图群体,将mlo基因定位到AFLP标记Bpm2(0.24 cM)和Bpm9(0.4 cM)之间0.64 cM的遗传区间,其中分子标记Bpm16与Mlo共分离。随后利用共分离的分子标记Bpm16为探针筛选了Ingred(Mlo)的YAC文库,筛选到4个YAC阳性克隆(YHV417-D1、YHV400-H11、YHV322-G2和YHV303-A6)。进一步分析发现其中3个YAC克隆(YHV400-H11、YHV322-G2和YHV303-A6)包含标记Bpm2和Bpm9位点,表明这3个克隆包含了Mlo物理位点。随后利用其中一个克隆YHV303-A6(650 kb)构建BAC文库,利用探针Bpm16继续筛选到阳性克隆BAC F15(60 kb),该克隆包含了分子标记Bpm2和Bpm16位点,但不包含分子标记Bpm9位点。根据分子标记Bpm2和Bpm19之间的序列重新设计了AFLP标记筛选重组单株,最后将mlo定位到了分子标记Bpm2(0.24 cM)和Bxm2(0.1 cM)之间0.34 cM遗传区间,物理距离为30 kb。利用BAC F15上的限制性酶切位点进行序列酶切和contigs分析,最后筛选到1个长度为5.8 kb的contig,包含了分子标记Bpm16位点和一个高可信的编码框区域。经基因扩增和序列分析发现,该基因只有1种开放阅读框,长度为1,599 bp,编码了包含533个氨基酸(60.4 kDa)的蛋白。分析DNA序列后发现该基因包含12个外显子和11个内含子,其中分子标记Bpm16横跨了第11个内含子和第12个外显子。mlo基因不同于以往克隆的R基因,是一种新类型的抗病基因,编码具有7个跨膜螺旋(7-TM)的跨膜蛋白。
利用突变体测序的方法对mlo基因进行功能验证。通过对已知的11个mlo突变体进行测序发现,11个突变体(来自6个不同的遗传背景)都在mlo位点发生了SNP突变或缺失,并能引起氨基酸变异。同时还利用mlo两个不同位点突变体遗传重组的方法对mlo进行了功能验证:突变体mlo-5和mlo-8的突变发生在同一位点,都在mlo基因第1个外显子;而突变体mlo-1的突变发生在mlo基因第4个外显子,两个突变体突变位点距离820 bp。利用mlo-5和mlo-8分别与mlo-1杂交,杂种F1代自交获得F2分离群体进行白粉病抗性鉴定,最后在mlo-8×mlo-1组合的F2群体鉴定到3株感病单株,mlo-5×mlo-1组合中鉴定到9株感病单株。通过对感病重组单株遗传分析、测序和Southern blot分析,明确了发现的感病单株都是重组的Mlo基因型,进一步对mlo进行了功能验证(Büschges et al., 1997)。
图3 Mlo蛋白家族的拓扑结构(Devoto et al. 1999)
mlo基因表现持久和广谱白粉病抗性,具有重要的育种潜力。大麦mlo突变体除了偶尔会在叶片上观察到少许的白粉病孢子外,往往或多或少地呈现叶片坏死、黄化和退绿斑等,尤其在抽穗期之后。mlo基因突变体叶片坏死等性状不是由于病原菌侵染导致的过敏性反应,而是其自身的负效应,但不同遗传背景下发生程度存在显著差异,部分品种仅有非常轻微的坏死反应。叶片坏死和退绿影响光合作用,mlo突变体往往粒重降低,产量下降(4%左右,Jørgensen 1992)。来源于埃塞俄比亚的mlo天然突变资源(mlo11)和新创制的突变体材料(mlo9)不良性状少,利用其进行遗传改良和背景选择,新育成的含有mlo基因抗白粉病大麦新品种已经没有明显的不良性状,产量水平可与高产商业品种相当,上世纪80-90年代之后在西欧得以大面积推广,占大麦播种面积的20-35%。
Acevedo-Garcia et al. (2017)利用Tilling方法创制的小麦Tamlo基因三拷贝突变体材料分别聚合了抗性程度不同的直系同源基因,以降低对农艺性状的影响,但其白粉病抗性水平稍弱于王延鹏等(Wang et al. 2014)利用TALEN技术创制的基因编辑材料,而且在株高和单株穗数上也存在一定程度的降低(图5b,c)。
图5 小麦Tamlo三拷贝突变体性状表现(Acevedo-Garcia et al., 2017)
主要参考文献
Acevedo-Garcia J, Collins NC, Ahmadinejad N, et al. (2013) Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 126(12):2969-2982.
Acevedo-Garcia J, Spencer D, Thieron H, et al. (2017) mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnology Journal, 15(3):367-378.
Bayles CJ, Ghemawat MS, Aist JR. (1990) Inhibition by 2-deoxy-D-glucose of callose formation, papilla deposition, and resistance to powdery mildew in an mlo barley mutant. Physiological and Molecular Plant Pathology, 36(1):63-72.
Büschges R, Hollricher K, Panstruga R, et al. (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 88(5):695-705.
Collins NC, Lahaye T, Peterhänsel C, et al. (2001) Sequence haplotypes revealed by sequence-tagged site fine mapping of the Ror1 gene in the centromeric region of barley chromosome 1H. Plant Physiology, 125(3):1236-1247.
Collins NC, Thordal-Christensen H, Lipka V, et al. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425(6961):973-977.
Consonni C, Humphry ME, Hartmann HA, et al. (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 38(6):716-720.
Devoto A, Piffanelli P, Nilsson I, et al. (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. Journal of Biological Chemistry. 274(49):4993-35004
Elliott C, Zhou F, Spielmeyer W, et al. (2002) Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. Molecular Plant Microbe Interactions, 15(10):1069-1077.
Freialdenhoven A, Peterhansel C, Kurth J, et al. (1996) Identification of genes required for the function of non-race-specific mlo resistance to powdery mildew inbarley. The Plant Cell, 8(1):5-14.
Freisleben R, Lein A. (1942) Über die auffindung einer mehltauresistenten mutante nach röntgenbestrahlung einer anfälligen reinen Linie von Sommergerste. Naturwissenschaften, 30(40):608-608.
Hinze K, Thompson RD, Ritter E, et al. (1991) Restriction fragment length polymorphism-mediated targeting of the mlo resistance locus in barley (Hordeum vulgare L.). Proceedings of the National Academy of Sciences USA, 88(9):3691-3695.
Ingvardsen CR, Massange-Sánchez JA, Borum F, et al. (2019) Development of mlo-based resistance in tetraploid wheat against wheat powdery mildew. Theoretical and Applied Genetics, 132(11):3009-3022.
Jørgensen IH. (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 63(1-2):141-152.
Jørgensen JH. (1983) Experience and conclusions from the work at Risø on induced mutations for powdery mildew resistance in barley. In Induced Mutations for Disease Resistance in Crop Plants II.
Jørgensen JH. (1984) Durability of the mlo powdery mildew resistancegenes in barley. Vortraege fuer Pflanzenzuechtung (Germany).
Jørgensen JH. (1988) Three kinds of powdery mildew resistance in barley. In the 5th International Barley Genetics Symposium. Maruzen Co.,:583-592.
Kim MC, Panstruga R, Elliott C, et al. (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature, 416(6879):447-451.
Konishi S, Sasakuma T, Sasanuma T. (2010) Identification of novel Mlo family members in wheat and their genetic characterization. Genes & Genetic Systems, 85(3):167-175.
Kusch S, Panstruga R. (2017) mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Molecular Plant Microbe Interactions, 30(3):179-189.
Lyngkjær MF, Carver TLW, Zeyen RJ. (1997) Suppression of resistance to Erysiphe graminisf. sp. Hordei conferred by the mlo5 barley powdery mildew resistance gene. Physiological and Molecular Plant Pathology, 50(1):17-36.
Meng J, Liang L, Jia P, et al. (2020) Integrationof ovular signals and exocytosis of a Ca2 channel by MLOs in pollen tube guidance. Nature Plants. DOI:10.1038/s41477-020-0599-1
Reinstädler A, MüllerJ, Czembor JH, et al. (2010) Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Plant Biology, 10(1):31.
Skou JP, Jørgensen JH, Lilholt U. (1984) Comparative studies on callose formation in powdery mildew compatible and incompatible barley. Journal of Phytopathology, 109(2):147-168.
Várallyay É, Giczey G, Burgyán J. (2012) Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Archives of Virology, 157(7):1345-1350.
Wang Y, Cheng X, ShanQ, et al. (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9):947.
Xu H, Yao G, Xiong L, et al. (2008) Identification and mapping of pm2026: a recessive powdery mildew resistance gene in an Einkorn (Triticum monococcum L.) accession. Theoretical and Applied Genetics, 117(4):471-477