圆锥曲线四点共圆和曲线系方程
上述定理用文字表述,即斜率均存在的两条直线与圆锥曲线(圆除外)有四个交点,则四个交点共圆的充分条件是两直线的斜率互为相反数.这是一个非常简洁的充要条件,运用这个定理可解决圆锥曲线上四点共圆的.
(Ⅱ)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D在同一个圆上,为什么?
【简解】: 因为直线AB的斜率等于1,所以AB的垂直平分线CD的斜率等于-1,两直线斜率互为相反数,由定理知A、B、C、D四点共圆.
赞 (0)
上述定理用文字表述,即斜率均存在的两条直线与圆锥曲线(圆除外)有四个交点,则四个交点共圆的充分条件是两直线的斜率互为相反数.这是一个非常简洁的充要条件,运用这个定理可解决圆锥曲线上四点共圆的.
(Ⅱ)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D在同一个圆上,为什么?
【简解】: 因为直线AB的斜率等于1,所以AB的垂直平分线CD的斜率等于-1,两直线斜率互为相反数,由定理知A、B、C、D四点共圆.