人工智能的局限性 | 经济学人精讲第672期

文章导读

本文选自《经济学人》6月13日刊文章。人工智能在最近几年大火,但本期的《经济学人》杂志却从各个方面讲述了人工智能的局限性。人工智能的发展并非一帆风顺,它70多年的发展历史交织着“寒冬期”和“火热期”,随着最近几年人工智能的突飞猛进,人们越来越意识到它的局限性,它的不可靠、强化偏见、传播错误信息、不安全,让人类对它既充满期待,又饱含警惕。

选文精讲

The future 未来
Humans will add to AI’s limitations
人类将增加人工智能的局限性
It will slow progress even more, but another AI winter is unlikely
它将进一步减缓进程,但另一个人工智能冬天不太可能
Jun 13th 2020 |
IN 1958 A psychologist and computer-science researcher named Frank Rosenblatt gave a public demonstration of his Perceptron, the distant ancestor of modern machine-learning algorithms. The Perceptron had been developed on a 9-tonne IBM 704, a mainframe computer with less power than a modern television remote control. Its party trick was its ability to learn, without any direct programming, to recognise cards printed on the left from those printed on the right.
  • algorithm: 算法
  • mainframe: 主机
  • party trick: 原意指“小把戏”,这里是“特别之处”
1958年,一位名叫弗兰克·罗森布拉特的心理学家和计算机科学研究员公开演示了他的感知器,即现代机器学习算法的远祖。感知机是在一台重达9吨的IBM 704上开发的,这台大型计算机的功率比现代电视遥控器还小。它的独特之处在于,无需任何直接编程,它就能通过卡片右边的内容学习识别卡片左边的内容。
America’s navy, which funded the work, hoped the Perceptron would be “the embryo of an electronic computer that…will be able to walk, talk, see, write, reproduce itself and become conscious of its own existence”. The machine would be able to “recognise people and call out their names” and “instantly translate speech in one language to speech or writing in another”.
资助这项工作的美国海军希望感知器能成为“电子计算机的胚胎……能够走路、说话、看、写、复制自己、并意识到自己的存在”,这台机器将能够“识别人并喊出他们的名字”,并“立即将一种语言的语音翻译成另一种语言的语音或文字”。

感谢阅读

(0)

相关推荐