MBR污泥膨胀的处理方法,快来学习
膜生物反应器中,随着运行时间的推移,膜内外表面都会受到不同程度的污染,致使膜过滤压力上升,膜运行周期缩短。
近年来,许多研究认为,胞外聚合物是膜污染众多因素中最重要的生物因素;尤其在污泥发生非丝状菌膨胀时,胞外聚合物的浓度急剧上升,严重影响膜组件的正常运行,而且使膜组件的更换周期缩短。那么MBR工艺中污泥膨胀如何应对?
清洗中的MBR膜组件
絮凝法
膨胀活性污泥的密度一般比水小,作为应急处理措施,可考虑投加混凝剂,以改善其沉降性能。我们初步选择了常用的高分子混凝剂——阳离子型聚丙烯酰胺和无机混凝剂——硫酸亚铁进行对比试验。
聚丙烯酰胺投加量与污泥沉降性能的关系
聚丙烯酰胺的投加对于污泥的沉降性能的改善有一定的效果,且存在一个最佳投加量,但是,效果不是很理想。笔者分析后认为,该中水回用系统采用新型淹没式复合膜生物反应器,曝气量大、水力搅拌强烈,聚集起来的絮体颗粒容易遭到破坏,从而导致混凝效果不理想;当投加量高于最佳投加量时,絮凝体除中和胶体的负电荷以外,过多的正电荷又使胶体离子带上正电荷而重新稳定。
硫酸亚铁投加量与污泥沉降性能的关系
阳离子型聚丙烯酰胺的投加效果受水力条件等因素的限制不是十分理想,同时其单体有毒性、难降解,存在二次污染问题,经济效益较投加硫酸亚铁差。
硫酸亚铁价格便宜、使用简单,对膜及污泥没有负面影响,其对污泥密度的影响是有效的,但其不能从根本上解决营养比例失调的问题,所以只能作为应急控制措施。
丝状菌膨胀
营养盐调整法
在污泥膨胀问题的研究中,对污泥膨胀的恢复与控制是一个十分重要的环节。在该中水回用工程的运行过程中发现,投加硫酸亚铁后,沉降性能一度改善的活性污泥在原有有机负荷条件下如停止投加,继续进行处理,则活性污泥的沉降性能就会逐渐恶化,三日后恢复到投加前的状态。所以需要寻找一种在活性污泥膨胀后行之有效的恢复控制方法。
运行过程中我们对正在同时运行的两组膜生物反应器进行对比试验:第一组投加了充足的氮源,使其BOD5,N平均质量比约为100:5;第二组在投加了充足的氮源的情况下,同时提高了进水有机负荷,有机负荷(以CODCr计)提高到2.0kgCOD/m3˙d以上。结果发现发现,污泥的SVI值降低到150mL/g以下时,第一组当反应器运行的时间为一周左右;第二组反应器运行的时间仅为三至四天。
实际运行经验表明:第一、解决因氮的缺乏引起的污泥膨胀的根本的解决方法是调整营养物质的比例。第二、在保持营养物比例适当的情况下提高有机负荷,可以缩短污泥的沉降性能恢复正常的时间。
其他控制方法
在污泥粘性膨胀最严重的情况下(用容器装一些污泥,无论用什么方法污泥始终粘附在容器的表面),可考虑适当排掉一些膨胀的污泥,再重新取一些新泥,以减少多糖类物质对污泥的覆盖;同时增加水力停留时间,使没有被完全氧化的有机物有足够的时间被消耗掉。
由于原水中洗涤剂含量很高,加之曝气强度较大,经常出现白色、粘稠的泡沫,并且越积越多,当污泥发生膨胀时,危害较大。有过一次由于泡沫积累成为高达一米多高的泡沫山,致使污泥大量流失。经过这次事故以后,我们除投加消泡剂以外,采取了水力消泡的方法。在反应池上方安装喷头,用MBR反应器的出水对反应池上部进行喷淋,以控制膨胀污泥和泡沫对反应器的危害,并已取得良好的效果。
污泥老化膨胀
结论
①以洗浴水为主要原水的MBR工艺在污泥膨胀期,可以采用硫酸亚铁作为应急投加混凝剂,最佳投加量为60mg/L,但因其不能从根本上解决营养比例失调的问题,所以只能作为应急控制措施。
②对于该中水回用工程运行过程中出现的污泥膨胀,根本的解决方法是调整营养物质的比例;同时发现,在保证营养物比例合适的前提下,提高有机负荷可以加速污泥沉降性能的恢复。工程实践证明,通过以上措施成功的控制了污泥的高粘性膨胀。同时发现,增加排泥以及增加水力停留时间也是有效的辅助措施。