ML之LiR:使用线性回归LiR回归模型在披萨数据集上拟合(train)、价格回归预测(test)
ML之LiR:使用线性回归LiR回归模型在披萨数据集上拟合(train)、价格回归预测(test)
输出结果
设计思路
核心代码
r= LinearRegression()
r.fit(X_train, y_train)
x = np.linspace(0, 26, 100)
x = x.reshape(xx.shape[0], 1)
y = r.predict(x)
class LinearRegression(LinearModel, RegressorMixin):
"""
Ordinary least squares Linear Regression.
Parameters
----------
fit_intercept : boolean, optional, default True
whether to calculate the intercept for this model. If set
to False, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional, default False
This parameter is ignored when ``fit_intercept`` is set to
False.
If True, the regressors X will be normalized before
regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before
calling ``fit`` on
an estimator with ``normalize=False``.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
n_jobs : int, optional, default 1
The number of jobs to use for the computation.
If -1 all CPUs are used. This will only provide speedup for
n_targets > 1 and sufficient large problems.
Attributes
----------
coef_ : array, shape (n_features, ) or (n_targets, n_features)
Estimated coefficients for the linear regression problem.
If multiple targets are passed during the fit (y 2D), this
is a 2D array of shape (n_targets, n_features), while if only
one target is passed, this is a 1D array of length
n_features.
intercept_ : array
Independent term in the linear model.
Notes
-----
From the implementation point of view, this is just plain
Ordinary
Least Squares (scipy.linalg.lstsq) wrapped as a predictor
object.
"""
def __init__(self, fit_intercept=True, normalize=False,
copy_X=True,
n_jobs=1):
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
self.n_jobs = n_jobs
def fit(self, X, y, sample_weight=None):
"""
Fit linear model.
Parameters
----------
X : numpy array or sparse matrix of shape [n_samples,
n_features]
Training data
y : numpy array of shape [n_samples, n_targets]
Target values. Will be cast to X's dtype if necessary
sample_weight : numpy array of shape [n_samples]
Individual weights for each sample
.. versionadded:: 0.17
parameter *sample_weight* support to
LinearRegression.
Returns
-------
self : returns an instance of self.
"""
n_jobs_ = self.n_jobs
X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
y_numeric=True, multi_output=True)
if sample_weight is not None and np.atleast_1d
(sample_weight).ndim > 1:
raise ValueError("Sample weights must be 1D array
or scalar")
X, y, X_offset, y_offset, X_scale = self._preprocess_data(
X, y, fit_intercept=self.fit_intercept, normalize=self.
normalize,
copy=self.copy_X, sample_weight=sample_weight)
if sample_weight is not None:
# Sample weight can be implemented via a simple
rescaling.
X, y = _rescale_data(X, y, sample_weight)
if sp.issparse(X):
if y.ndim < 2:
out = sparse_lsqr(X, y)
self.coef_ = out[0]
self._residues = out[3]
else:
# sparse_lstsq cannot handle y with shape (M, K)
outs = Parallel(n_jobs=n_jobs_)(
delayed(sparse_lsqr)(X, :j]ravel()) for y[.
j in range(y.shape[1]))
self.coef_ = np.vstack(out[0] for out in outs)
self._residues = np.vstack(out[3] for out in outs)
else:
self.coef_, self._residues, self.rank_, self.singular_ =
linalg.lstsq(X, y)
self.coef_ = self.coef_.T
if y.ndim == 1:
self.coef_ = np.ravel(self.coef_)
self._set_intercept(X_offset, y_offset, X_scale)
return self
赞 (0)