【初一数学】一元一次方程5大经典追及和相遇问题汇总,预习必看
01 行程问题
在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问题;三、流水行船问题; 四、过桥问题 。
行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
02 追及问题
两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若干时间,快的追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。
基本公式有:
追及(或领先)的路程÷速度差=追及时间
速度差×追及时间=追及(或领先)的路程
追及(或领先)的路程÷追及时间=速度差
要正确解答有关“行程问题”,必须弄清物体运动的具体情况。如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)。
03 相遇问题
两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。这类问题即为相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:
A, B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间
基本公式有:
两地距离=速度和×相遇时间
相遇时间=两地距离÷速度和
速度和=两地距离÷相遇时间
二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:
第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是“速度和”问题。利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
04 流水行船问题
顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。解答时要注意各种速度的涵义及它们之间的关系。
已知船的顺水速度和逆水速度,求船的静水速度及水流速度。解答这类问题,一般要掌握下面几个数量关系:
船速:在静水中的速度
水速:河流中水流动的速度
顺水船速:船在顺水航行时的速度
逆水速度:船在逆水航行时的速度
船速+水速=顺水船速
船速-水速=逆水船速
(顺水船速+逆水船速)÷2=船速
(顺水船速-逆水船速)÷2=水速
顺水船速=船速+水速=逆水船速+水速×2
05 过桥问题
一列火车通过一座桥或者是钻过一个隧道,研究其车长、车速、桥长或隧道道长,过桥或钻隧道的时间等关系的一类应用题。
解答这类应用题,除了根据速度、时间、路程三量之间的关系进行计算外,还必须注意到车长,即通过的路程等于桥长或隧道长加车长。
基本公式有:
桥长+车长=路程
平均速度×过桥时间=路程
过桥时间=路程÷平均速度