月季作为世界“四大切花”之首,具有极高的商业价值和独特的文化内涵。目前,我国切花月季种植面积已经超过40万亩,年产值突破200亿元。切花月季生产主要是在温室中进行,由于薄膜、玻璃等覆盖材料的阻挡,光照不足是普遍存在的问题,尤其是在冬春和阴雨季节,严重影响切花月季的产量和品质。所以,人工补光是设施月季种植的关键技术之一。补光成本依据地区、光源和设施条件不同大约占生产成本的10-30%,已经成为制约我国月季产业提质增效的瓶颈问题之一。因此,研究月季光响应规律具有现实的生产需求和理论价值。南京农业大学王长泉教授团队前期研究发现,月季是日中性植物,在光强满足的条件下开花时间对光周期相对不敏感。RcCO长日照条件下高表达并对月季开花发挥了主导作用,RcCOL4则在短日照下高表达并发挥开花调控功能,且RcCOL4位于RcCO的上游。RcCOL4通过与RcCO蛋白互作促进RcCO与RcFT启动子上CORE元件的绑定,进而促进RcFT在短日照下表达,使得月季在短日照条件下也能开花,表现出光周期不敏感性(如图1所示)【1】。该研究成果Alternative expressions of RcCOL4 in short day and RcCO in long day facilitate day-neutral response in Rosa chinensis发表在国际学术期刊Journal of Experimental Botany,法国农科院的Béatrice Denoyes教授对该成果进行了评述。图1 RcCOL4和RcCO协同调控月季光周期响应的作用机制【1】和光周期响应不同,月季对光强的应答却很敏感。最近王教授团队在Plant Physiology发文Phytochrome-interacting factors interact with transcription factor CONSTANS to suppress flowering in rose显示,当光周期条件一致(16h光照/8h黑暗)时无论有没有远红光(EOD-FR)补充,弱光(92 μmol·m-2·s-1)下生长的月季比强光(278μmol·m-2·s-1)下开花时间延迟2周以上,株高和节间都明显降低。在弱光条件下,RcPIF1、RcPIF3、RcPIF4在蛋白水平和转录水平都出现明显积累,干扰RcPIFs基因后月季花期和株高得到不同程度的恢复。这几个RcPIFs既能两两进行蛋白互作,同时都能与RcCO互作,CoIP证明四者形成复合体,光照强度通过改变复合体的稳定性调控RcFT的转录水平和开花(图3)【2】。可见,RcPIFs在月季光强应答中扮演了关键角色, RcCO发挥了重要的调节作用。所以,要实现月季的精准补光不仅要选择最佳的光照长度,还要统筹考虑光强和光质的综合作用。图3 RcPIFs和RcCO协同调控月季光强应答的作用机制【2】王长泉教授团队主要从事花卉发育生物学,以蔷薇属植物为主要对象,综合运用传统分离群体和QTL定位、现代分子生物学及多组学技术,发掘控制月季/玫瑰/蔷薇成花以及花器官发育的关键基因及调控网路,重点从光信号响应、低温春化和激素途径三个维度解析月季多次开花的分子机制,积累扎实的研究基础,发表多篇研究论文【1-7】,得到了国家自然科学基金、新疆联合基金和国家重点研发计划的资助。王长泉教授实验室计划招聘2-3名博士后,具体招聘条件和待遇参见http://www.njau.edu.cn/2020/1010/c576a109886/page.htm。有兴趣者可以直接联系王教授18651852517详谈,对于特别优秀者,在学校提供的待遇基础上,实验室将给予额外追加资助,欢迎有志之士加盟!参考文献[1] Jun Lu, Jingjing Sun, Anqi Jiang, Mengjuan Bai, Chunguo Fan, Jinyi Liu, Guogui Ning, Changquan Wang*. 2020. Alternate expressions of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitate day-neutral response in Rosa chinensis. Journal of Experimental Botany, 71: 4057-4068.[2] Jingjing Sun, Jun Lu, Mengjuan Bai, Yeqing Chen, Weinan Wang, Chunguo Fan, Jinyi Liu, Guogui Ning, Changquan Wang*. 2021. Phytochrome-interacting factors interact with transcription factor CONSTANS to suppress flowering in rose. Plant Physiology (online preview).[3] Mengjuan Bai, Jinyi Liu, Chunguo Fan, Yeqing Chen, Hui Chen, Jun Lu, Jingjing Sun, Guogui Nin, Changquan Wang*. 2021. KSN heterozygosity is associated with continuous flowering of Rosa rugosa Purple branch. Horticulture Research, 8: 26.[4] Jinyi Liu, Min Ren, Hui Chen, Silin Wu, Huijun Yan, Abdul Jalal, Changquan Wang*. 2020. Evolution of SHORT VEGETATIVE PHASE (SVP) genes in Rosaceae: Implications of lineage-specific gene duplication events and function diversifications with respect to their roles in processes other than bud dormancy. The Plant Genome, 13: e20053.[5] Yuwei Dong, Jun Lu, Jinyi Liu, Abdul Jalal, Changquan Wang*. 2020. Genome‑wide identification and functional analysis of JmjC domain‑containing genes in flower development of Rosa chinensis. Plant Molecular Biology, 102: 417-430.[6] Mengjuan Bai, Jingjing Sun, Jinyi Liu, Haoran Ren, Kang Wang, Yanling Wang, Changquan Wang*, Katayoon Dehesh*. 2019. The B-box protein BBX19 suppresses seed germination via induction of ABI5. The Plant Journal, 99: 1192–1202.[7] Jinyi Liu, Xiaodong Fu, Yuwei Dong, Jun Lu, Min Ren, Ningning Zhou, Changquan Wang*. 2018. MIKCC-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. Horticulture Research, 5: 25.