天坛小儿神外宫剑教授访谈:儿童型弥漫性高级别胶质瘤的解读与天坛诊疗策略
国际权威杂志《Neuro-Oncology》于2021年6月发布了第五版WHO中枢神经系统(central nervous system,CNS)肿瘤分类,脑胶质瘤部分发生了巨大变化。为此,神外资讯专访了北京天坛医院小儿神经外科主任宫剑教授,请他对此变化进行解读并介绍天坛诊疗策略。
宫剑 教授
北京天坛医院
教授,主任医师,博士研究生导师,北京天坛医院小儿神经外科病区主任。中国医师协会神经外科医师分会小儿专家委员会副主任委员,中国医药教育协会小儿神经外科分会副主任委员。
主要研究方向:1.儿童颅内肿瘤;2.儿童颅脑先天性疾病。
目前主持科技部十三五、国家自然科学基金等多项课题,国内外专业杂志发表医学论著30余篇。
一
请您解读一下新版WHO (2021) 中枢神经系统(CNS)肿瘤分类中脑胶质瘤分类的变化?
宫剑教授:
二
关于脑胶质母细胞瘤(GBM),新版CNS肿瘤分类仅保留成人型,取消了儿童型GBM这一概念,您是如何解读的?
宫剑教授:
具体而言,儿童型GBM与成人型GBM有何不同呢?
(1)流行病学:成人GBM占脑胶质瘤54%、原发性颅内恶性肿瘤48%[5],确诊中位年龄64岁,75-84岁达高峰[6];欧美人种发病率约3.19/10万[6],远高于亚洲人种0.59/10万[7]。儿童GBM临床少见,发病率仅为0.02-0.12/10万[8-10],仅占儿童颅内肿瘤3%[11],儿童型胶质瘤15%[10]。平均发病年龄8-13岁[2,11],男性多于女性[12]。
(2)临床特征:儿童由于表述差,首发症状常为哭闹、易激惹,而癫痫发生率较成人低[13],若出现神经功能障碍(如肢体活动障碍、失语、视力视野障碍等),常提示预后较差[14]。儿童GBM具有高侵袭性,但部位局限,较少软膜播散[3,15],更少向颅外转移[16]。儿童GBM最常见于脑干,其次位于幕上,30-50%位于大脑半球,仅1-2%位于小脑半球[4,17,18],而成人GBM最常见于大脑半球[5]。由于儿童型脑干GBM位置特殊,预后极差,不在本文讨论之列。北京天坛医院作为国内最大的儿童脑胶质瘤诊疗中心,我们对近百例儿童GBM术前影像进行分析,发现儿童幕上GBM影像学特点表现为三种类型:I型,瘤体显著环形强化伴中心坏死,瘤周水肿明显,与成人GBM相似(图1-A);II型,瘤体边界清晰、均匀强化、瘤周水肿不明显,特别是儿童丘脑GBM,与儿童丘脑毛细胞型星形细胞瘤类似,而与成人丘脑GBM影像学差异明显(图1-B);(美国洛杉矶儿童医院也证实,儿童丘脑高级别胶质瘤较少表现出大片瘤周水肿及坏死的情况[19],术前诊断高级别胶质瘤较为困难[20]);III型,肿瘤边界不清,存在瘤周水肿,无明显强化,CT甚至提示存在钙化,与儿童低级别胶质瘤易混淆,与成人GBM影像差异明显(图1-C)。
三
国际国内针对儿童弥漫性高级别胶质瘤的规范化治疗是什么?有什么新进展?
四
北京天坛医院作为国内最大的儿童胶质瘤诊疗中心,请问你们针对儿童DHGG的诊疗体会?
宫剑教授:
北京天坛医院小儿神经外科每年手术治疗儿童脑胶质瘤300余例,其中DHGG近40例。针对儿童GBM手术切除程度与预后相关性,我们65例回顾性分析显示,全切除组总生存期(OS)较部分切除组明显延长(20个月vs 14个月),其中41例大脑半球GBM,24个月vs 7个月;18例丘脑GBM,19个月vs 14个月。因此,肿瘤只要不过于弥散、边界尚清晰,要尽量全切。具体术中情况:多数肿瘤色暗红、质软、烂鱼肉样,血供极其丰富,只有全切肿瘤才能彻底止血(图2-A);但也有部分儿童丘脑GBM呈胶冻样、血供不丰富、边界较清晰、易吸除,往往误认为低级别胶质瘤,直到最终病理证实为GBM(图2-B)。
迄今为止,本组病例,生存期超过5年者8人,超过10年者1人,目前均正常学习生活,治疗效果好于成人,达到国际先进水平。
病例1
12岁女性患儿,右侧丘脑占位,肿瘤镜下全切;
组织病理:胶质母细胞瘤 (Ki-67:30%);
基因检测:IDH野生,H3K27M突变,TP53突变,PDGFRA突变,ATRX突变;
整合诊断:儿童型弥漫性中线胶质瘤,伴H3K27改变;
CNS WHO分级:4级;
术后状态(KPS评分):80分;
患儿术后进行标准治疗,目前术后15个月,正常学习生活。
病例2
8岁男性患儿,左侧丘脑占位,肿瘤镜下全切;
组织病理:胶质母细胞瘤 (Ki-67:20-40%);
基因检测:IDH野生,H3K27M突变,TP53突变,BRAF突变;
整合诊断:儿童型弥漫性中线胶质瘤,伴H3K27改变;
CNS WHO分级:4级;
术后状态(KPS评分):70分;
患儿术后进行标准治疗,目前术后6个月,正常学习生活。
病例3
8岁男性患儿,左侧丘脑及三角区占位,肿瘤镜下全切; 组织病理:胶质母细胞瘤 (Ki-67:20-60%); 基因检测:IDH野生,H3野生,ATRX突变; 整合诊断:弥漫性儿童型高级别胶质瘤,H3及IDH野生型; CNS WHO分级:4级; 术后状态(KPS评分):60分; 患儿术后进行标准治疗,目前术后3个月,后续治疗中。
病例4
9岁男性患儿,左侧丘脑占位,肿瘤镜下近全切除;
组织病理:胶质母细胞瘤 (Ki-67:40-50%);
基因检测:IDH野生,H3K27M突变,TP53突变;
整合诊断:儿童型弥漫性中线胶质瘤,伴H3K27改变;
CNS WHO分级:4级;
术后状态(KPS评分):80分;
患儿术后进行标准治疗,目前术后3个月,后续治疗中。
病例5
9岁女性患儿,左侧小脑半球占位,肿瘤镜下全切;
组织病理:胶质母细胞瘤 (Ki-67:30%);
基因检测:IDH野生,H3野生,ATRX突变,PDGFRA突变;
整合诊断:弥漫性儿童型高级别胶质瘤,H3及IDH野生型;
CNS WHO分级:4级;
术后状态(KPS评分):90分;
患儿术后进行标准治疗,目前术后6个月,正常学习生活。
病例6
9岁男性患儿,左侧丘脑占位,肿瘤镜下近全切除;
组织病理:胶质母细胞瘤 (Ki-67:30%);
基因检测:IDH野生,H3野生,BRAF突变,PDGFRA突变;
整合诊断:弥漫性儿童型高级别胶质瘤,H3及IDH野生型;
CNS WHO分级:4级;
术后状态(KPS评分):80分;
患儿术后进行标准治疗,目前术后5.5年,正常学习生活。
病例7
7岁男性患儿,右颞占位,肿瘤镜下全切;
组织病理:胶质母细胞瘤 (Ki-67:30%);
基因检测:未进行基因检测;
整合诊断:儿童型弥漫性高级别胶质瘤,NOS型;
CNS WHO分级:4级;
术后状态(KPS评分):90分;
患儿术后进行标准治疗,目前术后7年,正常学习生活。
病例8
12岁女性患儿,鞍上、左侧视束、视放射区占位,肿瘤镜下部分切除;
组织病理:胶质母细胞瘤 (Ki-67:30%);
基因检测:未进行基因检测;
整合诊断:儿童型弥漫性高级别胶质瘤,NOS型;
CNS WHO分级:4级;
术后状态(KPS评分):60分;
患儿术后未完成标准治疗,术后4个月死亡。
病例9
15岁男性患儿,右颞、底节区、枕叶多发占位,肿瘤镜下部分切除;
组织病理:胶质母细胞瘤 (Ki-67:80%);
基因检测:IDH野生,H3G34R突变;
整合诊断:儿童型弥漫性半球胶质瘤,H3G34突变型;
CNS WHO分级:4级;
术后状态(KPS评分):50分;
患儿术后进行标准治疗,未结疗,随访中。
五
请谈一下北京天坛医院儿童型弥漫性高级别胶质瘤(DHGG)的诊疗规范
总 结
参考文献
[1] Louis D N, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021.
[2] Nikitovic M, Stanic D, Pekmezovic T, et al. Pediatric glioblastoma: a single institution experience[J]. Childs Nerv Syst, 2016, 32(1): 97-103.
[3] Broniscer A, Gajjar A. Supratentorial high-grade astrocytoma and diffuse brainstem glioma: two challenges for the pediatric oncologist[J]. Oncologist, 2004, 9(2): 197-206.
[4] Mahvash M, Hugo H H, Maslehaty H, et al. Glioblastoma multiforme in children: report of 13 cases and review of the literature[J]. Pediatr Neurol, 2011, 45(3): 178-80.
[5] Tamimi A F, Juweid M: Epidemiology and Outcome of Glioblastoma, De Vleeschouwer S, editor, Glioblastoma, Brisbane (AU), 2017.
[6] Ostrom Q T, Gittleman H, Fulop J, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012[J]. Neuro Oncol, 2015, 17 Suppl 4: iv1-iv62.
[7] Lee C H, Jung K W, Yoo H, et al. Epidemiology of primary brain and central nervous system tumors in Korea[J]. J Korean Neurosurg Soc, 2010, 48(2): 145-52.
[8] Broniscer A. Past, present, and future strategies in the treatment of high-grade glioma in children[J]. Cancer Invest, 2006, 24(1): 77-81.
[9] Perkins S M, Rubin J B, Leonard J R, et al. Glioblastoma in children: a single-institution experience[J]. Int J Radiat Oncol Biol Phys, 2011, 80(4): 1117-21.
[10] Suri V, Das P, Pathak P, et al. Pediatric glioblastomas: a histopathological and molecular genetic study[J]. Neuro Oncol, 2009, 11(3): 274-80.
[11] Das K K, Mehrotra A, Nair A P, et al. Pediatric glioblastoma: clinico-radiological profile and factors affecting the outcome[J]. Childs Nerv Syst, 2012, 28(12): 2055-62.
[12] Ostrom Q T, Rubin J B, Lathia J D, et al. Females have the survival advantage in glioblastoma[J]. Neuro-Oncology, 2018, 20(4): 576-577.
[13] Kerkhof M, Dielemans J C, Van Breemen M S, et al. Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme[J]. Neuro Oncol, 2013, 15(7): 961-7.
[14] Chaichana K, Parker S, Olivi A, et al. A proposed classification system that projects outcomes based on preoperative variables for adult patients with glioblastoma multiforme Clinical article[J]. Journal of Neurosurgery, 2010, 112(5): 997-1004.
[15] Fangusaro J. Pediatric high-grade gliomas and diffuse intrinsic pontine gliomas[J]. J Child Neurol, 2009, 24(11): 1409-17.
[16] Omuro A, Deangelis L M. Glioblastoma and other malignant gliomas: a clinical review[J]. JAMA, 2013, 310(17): 1842-50.
[17] Reddy G D, Sen A N, Patel A J, et al. Glioblastoma of the cerebellum in children: report of five cases and review of the literature[J]. Childs Nerv Syst, 2013, 29(5): 821-32.
[18] Das K K, Kumar R: Pediatric Glioblastoma, De Vleeschouwer S, editor, Glioblastoma, Brisbane (AU): Codon Publications
Copyright: The Authors., 2017.
[19] Panigrahy A, Blüml S. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI)[J]. J Child Neurol, 2009, 24(11): 1343-65.
[20] Chang Y W, Yoon H K, Shin H J, et al. MR imaging of glioblastoma in children: usefulness of diffusion/perfusion-weighted MRI and MR spectroscopy[J]. Pediatr Radiol, 2003, 33(12): 836-42.
[21] Fangusaro J. Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology[J]. Front Oncol, 2012, 2: 105.
[22] Korshunov A, Ryzhova M, Hovestadt V, et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers[J]. Acta Neuropathologica, 2015, 129(5): 669-678.
[23] Pollack I F, Hamilton R L, Sobol R W, et al. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children's Oncology Group[J]. Childs Nerv Syst, 2011, 27(1): 87-94.
[24] Buccoliero A M, Castiglione F, Degl'innocenti D R, et al. IDH1 Mutation in Pediatric Gliomas: Has it a Diagnostic and Prognostic Value?[J]. Fetal and Pediatric Pathology, 2012, 31(5): 278-282.
[25] Dahiya S, Emnett R J, Haydon D H, et al. BRAF-V600E mutation in pediatric and adult glioblastoma[J]. Neuro-Oncology, 2014, 16(2): 318-319.
[26] Pollack I F, Hamilton R L, Burger P C, et al. Akt activation is a common event in pediatric malignant gliomas and a potential adverse prognostic marker: a report from the Children's Oncology Group[J]. J Neurooncol, 2010, 99(2): 155-63.
[27] Wu G, Broniscer A, Mceachron T A, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas[J]. Nat Genet, 2012, 44(3): 251-3.
[28] Lee J Y, Park C K, Park S H, et al. MGMT promoter gene methylation in pediatric glioblastoma: analysis using MS-MLPA[J]. Childs Nerv Syst, 2011, 27(11): 1877-83.
[29] Paugh B S, Zhu X, Qu C, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas[J]. Cancer Res, 2013, 73(20): 6219-29.
[30] Brandes A A, Tosoni A, Franceschi E, et al. Glioblastoma in adults[J]. Crit Rev Oncol Hematol, 2008, 67(2): 139-52.
[31] Finocchiaro G, Pellegatta S. Perspectives for immunotherapy in glioblastoma treatment[J]. Curr Opin Oncol, 2014, 26(6): 608-14.
[32] Li X, Li Y, Cao Y, et al. Risk of subsequent cancer among pediatric, adult and elderly patients following a primary diagnosis of glioblastoma multiforme: a population-based study of the SEER database[J]. Int J Neurosci, 2017, 127(11): 1005-1011.
[33] Aldape K, Zadeh G, Mansouri S, et al. Glioblastoma: pathology, molecular mechanisms and markers[J]. Acta Neuropathologica, 2015, 129(6): 829-848.
[34] Tan A C, Ashley D M, Lopez G Y, et al. Management of glioblastoma: State of the art and future directions[J]. CA Cancer J Clin, 2020, 70(4): 299-312.
[35] Roth P, Gramatzki D, Weller M. Management of Elderly Patients with Glioblastoma[J]. Curr Neurol Neurosci Rep, 2017, 17(4): 35.
[36] Adams H, Adams H H, Jackson C, et al. Evaluating extent of resection in pediatric glioblastoma: a multiple propensity score-adjusted population-based analysis[J]. Childs Nerv Syst, 2016, 32(3): 493-503.
[37] Song K S, Phi J H, Cho B K, et al. Long-term outcomes in children with glioblastoma[J]. J Neurosurg Pediatr, 2010, 6(2): 145-9.
[38] Roh T H, Park H H, Kang S G, et al. Long-term outcomes of concomitant chemoradiotherapy with temozolomide for newly diagnosed glioblastoma patients: A single-center analysis[J]. Medicine (Baltimore), 2017, 96(27): e7422.
[39] Torre M, Vasudevaraja V, Serrano J, et al. Molecular and clinicopathologic features of gliomas harboring NTRK fusions[J]. Acta Neuropathol Commun, 2020, 8(1): 107.
[40] Nabors L B, Portnow J, Ahluwalia M, et al. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2020, 18(11): 1537-1570.
[41] 脑胶质瘤诊疗规范(2018年版) J 中华神经外科杂志[J], 2019(03): 217-239.
[42] Perkins S M, Rubin J B, Leonard J R, et al. Glioblastoma in Children: A Single-Institution Experience[J]. International Journal of Radiation Oncology Biology Physics, 2011, 80(4): 1117-1121.
[43] Omuro A, Deangelis L M. Glioblastoma and Other Malignant Gliomas A Clinical Review[J]. Jama-Journal of the American Medical Association, 2013, 310(17): 1842-1850.
[44] Korshunov A, Schrimpf D, Ryzhova M, et al. H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers[J]. Acta Neuropathologica, 2017, 134(3): 507-516.
[45] Liu M, Thakkar J P, Garcia C R, et al. National cancer database analysis of outcomes in pediatric glioblastoma[J]. Cancer Medicine, 2018, 7(4): 1151-1159.
[46] Braunstein S, Raleigh D, Bindra R, et al. Pediatric high-grade glioma: current molecular landscape and therapeutic approaches[J]. J Neurooncol, 2017, 134(3): 541-549.
[47] Jones C, Perryman L, Hargrave D. Paediatric and adult malignant glioma: close relatives or distant cousins?[J]. Nat Rev Clin Oncol, 2012, 9(7): 400-13.
[48] Okonogi N, Shirai K, Oike T, et al. Topics in chemotherapy, molecular-targeted therapy, and immunotherapy for newly-diagnosed glioblastoma multiforme[J]. Anticancer Res, 2015, 35(3): 1229-35.
[49] Sposto R, Ertel I J, Jenkin R D, et al. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group[J]. J Neurooncol, 1989, 7(2): 165-77.
[50] Narayana A, Kunnakkat S, Chacko-Mathew J, et al. Bevacizumab in recurrent high-grade pediatric gliomas[J]. Neuro Oncol, 2010, 12(9): 985-90.
[51] Bastien J I, Mcneill K A, Fine H A. Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date[J]. Cancer, 2015, 121(4): 502-16.