2020CSCO丨融合基因变异型肺癌的临床精准诊疗的进展
本文整理自:《中国临床肿瘤学进展2020》。后台输入“CSCO2020”,即可获得《中国临床肿瘤学进展2020》PDF版下载链接。
访南京大学医学院附属鼓楼医院苗立云博士:临床医生眼中肺癌高通量基因检测注意事项和发展趋势
访湖南省肿瘤医院蒲兴祥博士:临床医生眼中肺癌高通量基因检测注意事项和发展趋势
访上海交通大学附属胸科医院李子明博士:临床医生眼中肺癌高通量基因检测注意事项和发展趋势
肺癌是世界上致死率最高的恶性肿瘤。自2004年EGFR 基因突变被发现以来,经临床实践证明,靶向治疗EGFR 基因突变型肺癌的疗效优于传统化疗,且安全性高。后续随着研究者从基因层面对非小细胞肺癌(Non-small Cell Lung Cancer, NSCLC)的发生机制进行不断深入探索。随后陆续发现ALK融合,ROS1融合,RET融合,NTRK 融合,FGFR融合,NRG1融合,MET融合,EGFR 融合,BRAF 融合,ERBB2融合等,统称融合变异亚型肺癌,融合变异型肺癌约占非小细胞肺癌的10%-15%左右,据长三角肺癌协作组最新一项调查显示,2619例融合变异型肺癌中,ALK融合占47.04%(1232例),ROS1融合占23.21%(608例),RET融合占12.52%(328例),NTRK 融合占3.86%(101例),FGFR融合占2.94%(77例),NRG1融合占1.37%(36例),ERBB2融合占2.10%(55例),BRAF 融合占1.49%(14例),MET融合占0.92%(24例),EGFR 融合占2.71%(71例),其他少见融合占1.76%(46例),包括KRAS 融合,AKT1融合,RAF1融合,BRCA1融合,CDKN2A 融合等。但关于融合变异型肺癌患者的临床特点及最新治疗进展,目前缺少详尽的概括总结。本文结合目前最新的研究进展,对融合变异型肺癌患者的临床特点及诊疗进展进行简要综述,以提高临床医师对融合变异型肺癌变的认识。
融合型肺癌融合亚型分布图
所谓融合基因,是指将两个或多个基因的编码区首尾相连,置于同一套调控序列(包括启动子、增强子、核糖体结合序列、终止子等)控制之下,构成的嵌合基因。融合基因的表达产物为融合蛋白。目前可用于融合基因检测的方法包括FISH、免疫组织化学(IHC)、逆转录聚合酶链反应(RT-PCR)、转录组测序和二代测序(NGS)等方法。①FISH 技术:在融合变异型肺癌中FISH 不仅可检测已知的融合,还可检测未知的融合,且由于其结果的可靠性及稳定性,仍然是目前检验其他检测技术准确性的最重要的手段,局限性在于由于FISH 技术本身的局限性,如(1)肿瘤组织的异质性可能影响FISH 检测的结果偏差;(2)某些罕见或未知的断裂与融合位点间距可能小于FISH 检测判读的最小阈值,从而导致不可避免的假阴性结果;(3)该技术本身对石蜡组织样本质量要求较高,使用超过6个月的组织切片就可能导致较弱的杂交信号;(4)整个检测过程耗时较长,检测程序繁复,对检测人员技术经验要求高,检测成本高等,因此该技术并不适用于大规模筛查性诊断。②IHC技术:由于非小细胞肺癌中发生融合变异的概率只有10%-15%,上文已提到,耗时长、耗费高的检测技术并不适用于临床筛查。因此可利用IHC方法自身的耗时短、成本低,且已实现自动化操作等优点,作为常规融合基因,如ALK融合,ROS1融合,NTRK 融合等的筛查手段,但,采用IHC 方法确诊常规融合基因阳性患者存在一定的局限性,对于IHC 检测阳性的结果,建议进一步使用其他检测手段进行验证。③RT-PCR 技术:RT-PCR 技术分为普通RT-PCR 和Real-time RT-PCR 两种。普通RT-PCR 是指样本RNA 在逆转录酶和特异性引物作用下逆转录成cDNA,然后在特异性引物对下进行PCR扩增,扩增后的产物通过琼脂糖凝胶电泳进行阴阳性判定。普通RT-PCR技术是直接检测基因融合状态的一种方法.只能对已知的融合基因类型进行检测,检测灵敏度低,需开盖操作,容易造成环境污染,引起假阳性。Real-time RT-PCR技术是RNA 逆转录cDNA 和荧光定量PCR 扩增相结合的一种技术。首先经逆转录酶和特异性引物作用下,将RNA 逆转录成cDNA,再以cDNA 为模板扩增目的片段。该技术在PCR 反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR 进程.最后通过CT 值对未知模板进行定性和定量分析的一种方法Real-time RT-PCR技术是直接检测基因融合状态的一种方法,快速灵敏,但需要高质量的RNA 且只能对已知的融合基因类型进行检测。虽然RT-PCR 技术快速灵敏,是检测基因融合较直接的方法.但其只能检测断裂点已知的融合类型。④二代测序(NGS)技术:NGS 优势在于可有效检出所有融合基因及融合伙伴,可弥补常规检测方法存在的漏检、错检或不能明确融合伴侣基因等不足。包括基于DNA 技术的NGS 和基于RNA 技术的NGS,其中DNA 技术主要针对突变,只能检测常见融合伙伴,对于少见融合伙伴存在假阳性或内含子区只能检测范围,无法精准检测出融合伙伴,如目前市场是杂交捕获技术,RNA 技术主要针对融合,特别是少见融合伙伴能够准确检出,如目前市场上基于AMP(Anchoredmultiplex PCR,锚定多重PCR)技术或基于AMP 技术的改进版-PANO-Seq®。我们团队于2020 年初在Clin Chem 上发表的基于NGS 技术的RNA+DNA 测序,首次结合DNA 技术检测突变的优势和RNA 技术检测融合的优势应用于大样本临床检测,在基于杂交捕获技术方法泛阴性样本中仍可检出12%-16%的可用靶点,特别是漏检的NRG1 融合,NTRK 融合,MET 融合,EGFR 融合等罕见融合靶点。
参考文献
[1] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1):7-30.
[2] Song Z B, Xu C W, He Y W, et al. Simultaneous detection of translocations and localmutations in cancer tissue biopsies by sequencing dual nucleic acid templates in single reaction [J].Clin Chem, 2020, 66(1): 178-187.
[3] Soda M, Choi Y L, Enomoto M, et al. Identification of the transforming EML4-ALK fusiongene in non-small-cell lung cancer [J]. Nature 2007; 448(7153):561-6.
[4] Kwak E L, Bang Y J, Camidge D R, et al. Anaplastic lymphoma kinase inhibition in nonsmall-cell lung cancer [J]. N Engl J Med 2010; 363(18): 1693-703.
[5] Camidge D R, Bang Y J, Kwak E L, et al. Activity and safety of crizotinib in patients withALK-positive non-small-cell lung cancer: updated results from a phase 1 study [J]. Lancet Oncol2012; 13(10): 1011-9.
[6] Ou S H, Tang Y, Polli A, et al. Clinical benefit of continuing ALK inhibition with crizotinibbeyond initial disease progression in patients with advanced ALK-positive NSCLC [J]. Ann Oncol2014; 25(2): 415-422.
[7] Shaw A T, Kim D W, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALKpositivelung cancer [J]. N Engl J Med 2013; 368(25): 2385-94.
[8] Solomon B J, Mok T, Kim D W, et al. First-line crizotinib versus chemotherapy in ALKpositivelung cancer [J]. N Engl J Med 2014; 371(23): 2167-77.
[9] Gainor J F, Tan D S, De Pas T, et al. Progression-Free and Overall Survival in ALK-PositiveNSCLC Patients Treated with Sequential Crizotinib and Ceritinib [J]. Clin Cancer Res 2015; 21(12):2745-52.
[10] Gadgeel S M, Gandhi L, Riely G J, et al. Safety and activity of alectinib against systemicdisease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-celllung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study [J]. Lancet Oncol2014; 15(10): 1119-28.
[11] Shaw AT, Gandhi L, Gadgeel S, et al. Alectinib in ALK-positive, crizotinib-resistant, nonsmall-cell lung cancer: a single-group, multicentre, phase 2 trial [J]. Lancet Oncol 2016; 17(2): 234-42.
[12] Wu Y L, Lu S, Lu Y, et al. Results of PROFILE 1029, a Phase III Comparison of First-LineCrizotinib versus Chemotherapy in East Asian Patients with ALK-Positive Advanced Non-SmallCell Lung Cancer [J]. J Thorac Oncol 2018; 13(10): 1539-1548.
[13] Hida T, Nokihara H, Kondo M, et al. Alectinib versus crizotinib in patients with ALKpositivenon-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial [J]. Lancet2017; 390(10089): 29-39.
[14] Soria J C, Tan D S, Chiari R, et al. First-line ceritinib versus platinum-based chemotherapyin advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label,phase 3 study [J]. Lancet 2017; 389:917-929.
[15] Peters S, Camidge D R, Shaw A T, et al. Alectinib versus Crizotinib in Untreated ALKPositiveNon-Small-Cell Lung Cancer [J]. N Engl J Med 2017; 377(9): 829-838.
[16] Shaw A T, Felip E, Bauer T M, et al. Lorlatinib in non-small-cell lung cancer with ALK orROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial[J]. Lancet Oncol 2017; 18(12): 1590-1599.
[17] Yang Y P, Zhang J Y, Zhou JY, et al. Efficacy, safety, and biomarker analysis of ensartinibin crizotinib-resistant, ALK-positive non-small-cell lung cancer: a multicentre, phase 2 trial [J].Lancet Respir Med, 2020, 8(1): 45-53.
[18] Zhou C C, Kim S W, Reungwetwattana T, et al. Alectinib versus crizotinib in untreatedAsian patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer (ALESIA): arandomised phase 3 study [J]. Lancet Respir Med, 2019, 7(5): 437-446.
[19] Bergethon K, Shaw A T, Ou S H, et al. ROS1 rearrangements define a unique molecularclass of lung cancers [J]. J Clin Oncol 2012; 30(8): 863-70
[20] Shaw A T, Ou S H, Bang Y J, et al. Crizotinib in ROS1-rearranged non-small-cell lungcancer [J]. N Engl J Med 2014; 371(21):1963-71.
[21] Mazieres J, Zalcman G, Crino L, et al. Crizotinib therapy for advanced lungadenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort [J]. J Clin Oncol 2015;33(9): 992-9.
[22] Moro-sibilot D, Cozic N, Péol M, et al. Crizotinib in c-MET- or ROS1-positive NSCLC:results of the AcSé phase II trial [J]. Ann Oncol 2019; 30(12): 1985-1991.
[23] Wu Y L, Yang J C, Kim D W, et al. Phase II Study of Crizotinib in East Asian Patients WithROS1-Positive Advanced Non-Small-Cell Lung Cancer [J]. J Clin Oncol 2018; 36(14): 1405-1411.
[24] Lim S M, Kim H R, Lee J S, et al. Open-Label, Multicenter, Phase II Study of Ceritinib inPatients With Non-Small-Cell Lung Cancer Harboring ROS1 Rearrangement [J]. J Clin Oncol 2017;35(23): 2613-2618.
[25] Camidge D R, Kim H R, Ahn M J, et al. Brigatinib versus Crizotinib in ALK⁃positive non⁃small⁃cell lung cancer [J]. N Engl J Med 2018; 379(21):2027-2039.
[26] Shaw A T, Solomon B J, Chiari R, et al. Lorlatinib in advanced ROS1-positive non-smallcelllung cancer: a multicentre, open-label, single-arm, phase 1-2 trial [J]. Lancet Oncol, 2019,20(12):1691-1701.
[27] Lee S H, Lee J K, Ahn M J, et al. Vandetanib in pretreated patients with advanced nonsmallcell lung cancer-harboring RET rearrangement: a phase II clinical trial [J]. Ann Oncol, 2017,28(2): 292-297.
[28] Yoh K, Seto T, Satouchi M, et al. Vandetanib in patients with previously treated RETrearranged advanced non small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial[J]. Lancet Respir Med, 2017, 5(1): 42-50.
[29] Drilon A, Rekhtman N, Arcila M, et al. Cabozantinib in patients with advanced RETrearrangednon- small- cell lung cancer: an open-label, single-centre, phase 2, single arm trial [J].Lancet Oncol, 2016, 17(12): 1653-1660.
[30] Drilon A, Laetsch T W, Kummar S, et al. Efficacy of Larotrectinib in TRK Fusion-PositiveCancers in Adults and Children [J]. N Engl J Med, 2018, 378(8):731-739.
[31] Laetsch T W, DuBois S G, Mascarenhas L, et al. Larotrectinib for paediatric solid tumoursharbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study [J].Lancet Oncol, 2018, 19(5):705-714.
[32] Hong D S, DuBois S G, Kummar S, et al. Larotrectinib in patients with TRK fusionpositivesolid tumours: a pooled analysis of three phase 1/2 clinical trials [J]. Lancet Oncol, 2020,21(4):531-540.
[33] Doebele R C, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced ormetastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials [J].Lancet Oncol, 2020, 21(2):271-282.
[34] Jonna S, Feldman R A, Swensen J, et al. Detection of NRG1 Gene Fusions in Solid Tumors[J]. Clin Cancer Res, 2019, 25(16):4966-4972.
[35] MCLA-128 Fights NRG1 Fusion-Positive Cancers [J]. Cancer Discov, 2019, 9(12):1636.
[36] Shin D H, Jo J Y, Han J Y. Dual Targeting of ERBB2/ERBB3 for the Treatment ofSLC3A2-NRG1-Mediated Lung Cancer [J]. Mol Cancer Ther, 2018, 17(9):2024-2033.
[37] Fernandez-Cuesta L, Plenker D, Osada H, et al. CD74-NRG1 fusions in lungadenocarcinoma [J]. Cancer Discov, 2014, 4(4):415-22.
[38] Wu Y M, Su F, Kalyana-Sundaram S, et al. Identification of targetable FGFR gene fusionsin diverse cancers. [J]. Cancer Discov, 2013, 3(6):636-47.
[39] Javle M, Lowery M, Shroff R T, Weiss K H, et al. Phase II Study of BGJ398 in PatientsWith FGFR-Altered Advanced Cholangiocarcinoma [J]. J Clin Oncol. 2018, 36(3):276-282.
[40] Ghassan K Abou-Alfa, Vaibhav Sahai, Antoine Hollebecque, et al. Pemigatinib forPreviously Treated, Locally Advanced or Metastatic Cholangiocarcinoma: A Multicentre, Open-Label, Phase 2 Study [J]. Lancet Oncol. 2020, 21(5):671-684.
[41] Zhu Y C, Wang W X, Xu C W, et al. Identification of a novel crizotinib-sensitive METATXN7L1gene fusion variant in lung adenocarcinoma by next generation sequencing [J]. AnnOncol, 2018, 29(12): 2392-2393.
[42] Zhu Y C, Wang W X, Zhang Q X, et al. MET-UBE2H fusion as a novel mechanism ofacquired EGFR resistance in lung adenocarcinoma [J]. J Thorac Oncol, 2018, 13(10): e202-e204.
[43] Zhu Y C, Wang W X, Xu C W, et al. EGFR-RAD51 fusion variant in lung adenocarcinomaand response to erlotinib: A case report [J]. Lung Cancer, 2018, 115: 131-134.
[44] Zhu Y C, Wang W X, Li X L, et al. Identification of a novel icotinib-sensitive EGFRSEPTIN14fusion variant in lung adenocarcinoma by next-generation sequencing [J]. J Thorac Oncol,2019, 8(14): e181-e183.
[45] Zhu Y C, Wang W X, Xu C W, et al. A patient with lung adenocarcinoma with BRAF genefusion and response to vemurafenib [J]. Clin Lung Cancer, 2019, 20(3): e224-e228.
[46] Xu C W, Wang W X, Zhang Q X, et al. Real-world large-scale study of ERBB2 gene fusions and its response to afatinib in Chinese non-small cell lung cancer (NSCLC): A multicenter study [J]. J Clin Oncol, 2019, 37(15_suppl): e13002.