【仪器分析】ICP原子发射光谱构造与原理(四)

光学系统(多色仪)

    光学系统的主要作用是将等离子体发射的光分成单色光(平面光栅, 凹面光栅, 中阶梯光栅)。按照不同波长展开而获得光谱

光谱仪的分光(色散)系统

复合光经色散元素分光后,得到一条按波长顺序排列的光谱,能将复合光束分解为单色光,并进行观测记录的设备称为光谱仪。无论是在单道扫描型还是多通道型或全谱直读型的任何光谱仪中,就是为了达到以下两个目标:
(a)有适当的波长范围和波长选择,
(b)能从被检测的辐射源的特定区域里采集尽可能多的光。
为达到这两个目标,系统将包括:
(a)一个入射狭缝;它提供与狭缝尺寸相同的的辐射光带,
(b)一个能产生一束平行光的准直器,
(c)一个或两个组合的色散元件,
(d)一个能使被色散的特定狭窄光带重显的聚焦元件,
(e)一个或多个能使所需光带分离的出射狭缝(全谱直读型仪器无需出射狭缝)。
在ICP光谱仪的分光系统中,采用的色散元件几乎全都是光栅,在一些高分辨率的系统中,棱镜也是分光系统中的一个组成部件。

1 衍射光栅

平行、等宽而又等间距的多缝装置称为衍射光栅。它是利用光的衍射和干涉现象进行分光的一种色散元件,衍射光栅有透射式和反射式两种,光谱仪常用的是反射光栅,它的缝是不透明的反射铝膜。在一块极其平整的毛坏上镀上铝层,刻上许多平行、等宽而又等距的线槽,每条线槽起着一个“狭缝”的作用,每毫米刻线有1200条、2400条或3600条,整块光栅的刻线总数几万条到几十万条。
反射光栅从形状上可分为平面光栅,凹面光栅和阶梯光栅,从制作方法上又可分为机刻光栅和全息光栅。
在一般的反射光栅中,由于光栅衍射中没有色散能力的零级衍射的主极大占去衍射光强的大部分(80%以上),随着主极大的级次增高,光强迅速减弱(见右图)。因此,使用这种反射光栅时,其一较弱,二级衍射更弱。为解决这个问题,将光栅的线槽刻成锯齿形,使其具有定向“闪耀”能力,把能量集中分布在所需的波长范围。光栅复制技术的发展,大大降低了生产成本并缩短生产周期,使光栅得到广泛应用。

1.1平面反射光栅

1) 光栅方程

根据光的衍射和干涉原理,当平行光束以α角入射于光栅时,则在符合下述方程的角β方向上获得最大光强。

d(sinα+sinβ)=ml   (m=0 ±1 ±2)

其中d-光栅常数,即相邻两缝的间距,α-入射角,β-出射角,m-衍射级次,或称为光谱级次,l-衍射光的波长。

2) 平面反射光栅的特点

a) 根据光栅方程,当光栅常数d为定值时,对于同一方向(α一定)入射的复合光在同级光谱(m一定)中,不同波长l有不同的衍射角β与之对应,因而可在不同的衍射方向之获得不同波长的谱线(主极大)。这就是光栅的色散原理。
b) 对一定波长l的单色光而言,在光栅常数d和入射角α固定时,对于不同级次m(m=0 ±1 ±2……)可得到不同角β的衍射光,即同一波长可以有不同级次的谱线(主极大)。
c) 对于复合光,当m=0时,在β=-α的方向上,任何波长都可使光栅方程成立,即在此方向上,光栅的作用就象一面反射镜一样,将得到不被分光的零级光谱,入射光束中的所有波长都叠加在零级光谱中。当d和α为固定值时,对于不同波长、不同级次的光谱,只要其乘积ml等于上述定值,则都可以在同一衍射角β的方向上出现,即

m1l1=m2l2= m3l3=……

例如,一级光谱中波长为l的谱线和波长为l/2的二级谱线,波长为l/3的三级谱线……重叠在一起(如图)。这种现象称为光谱级次的重叠。它是光栅光谱的一个缺点,对光谱分析不利,应设法予以清除。在平面光栅光谱仪中,常用不同颜色的滤光片来消除这种级次重叠。同时为了获得足够的光能量,在ICP光谱分析中,通常选择第一级(m=1)或第二级次(m=2)的光谱谱线。

1.2闪耀光栅

一般光栅具有色能力,但衍射能量的80%左右集中在不分光的零级光谱中,而有用的一、二级光谱依次减弱,因而实用价值很低。
为了克服这一缺点,适当地改变反射光栅的刻槽形状,使起“狭缝”作用的反射槽面和光栅平面形成一定的倾角e,如图,即可将入射光的大部分能量集中到所需衍射级次的某个衍射波长附近,该波长称为“闪耀波长”,这种现象称为光栅的闪耀作用,这种光栅称为闪耀光栅,也称小阶梯光栅,倾角e为闪耀角。
闪耀光栅的主要好处在于可使光能量集中在第一光谱级次(m=1)的λb与第二光谱级次(m=2)的λb/2附近。
a) 在“自准”条件下(a=b=e),闪耀波长与闪耀角的关系为2dSine=m·λbm,可根据需要的闪耀波长λbm来设计相应的闪耀角e。
b) 光栅的闪耀并非只限于闪耀波长,而是在该闪耀波长附近的一定范围内也有相当程度的闪耀。
c) 如图表示为闪耀光栅的特性。这种光栅的一级闪耀波长λb1=560nm,有86%的光强集中在一级,而其余14%被分配在零级和其他各级中。从该图可以看出,该光栅的二级光栅光谱的闪耀波长λb2=560/2=280nm,实际上,光强的分布难与理论值完全相符,因为光栅刻线形状不可能精确地控制使其完全一致,图中表现了两条曲线的差别。
总之,闪耀光栅可将某一波长的75-85%的光强集中到某一级次上,从而消除了一般光栅把光强集中在零级,而使其他级次的谱线变得很弱的缺点。

1.3 中阶梯光栅(echelle)

线色散率、分辨率、集光本领是评价光谱仪性能的重要指标,而这些性能又主要取决于所采用的色散元件—光栅,制造高性能的光栅一直是光谱仪技术追求的目标。
从光栅色散率公式可知,在自准条件下(a=b=e)

dl/dλ=(m·f)/(d·cosb)

提高线色散率可采用长焦距f、大衍射角b、高光谱级次m、减少两刻线间的距离d(提高每毫米刻线数)。

从光栅分辨率公式可知

R=λ/Dλ=m·N

提高分辨率可增加光栅刻线总数N、用高衍射级次来解决。
在常规的光栅设计中,都是通过增加每毫米刻线数来提高线色散率和分辨率。事实上由于制造技术及成本原因,精确、均匀地在每毫米刻制2400条线已很困难,采用全息技术制造的全息光栅最高可达10000条,但由于槽面成正弦形,使闪耀特性受影响,集光效率下降。zzzz

2. 凹面光栅

凹面光栅是1882年罗兰(Rowland)提出的,它是刻划在球面的一系列等距刻槽的反射式衍射光栅。与平面光栅必须借助成像系统来形成谱线不同,凹面光栅在光路中兼具色散和聚焦两种作用,因此在凹面光栅光谱仪中就只有狭缝、凹面光栅和检测器组成,光路紧凑(如图)。今天绝大部分直读式光谱仪(包括火花、多通道ICP)均采用凹面光栅作为色散元件,但凹面光栅的象散问题是比较严重的。

3. 光栅的误差

在刻制光栅时,要求每条刻线必须很直,各刻线间严格地相互平行与等距,刻槽的几何形状必须完全一致。尽管光栅刻划机属精密机械之王,并在相当严格的环境下工作,但仍不可避免地存在机械误差,因而在机刻光栅的光谱中会出现一些不真实的谱线称为鬼线或伴线。
平面反射光栅都由机刻光栅(母光栅)复制而成,因而鬼线的出现,是这种光栅不可避免的缺陷。

4. 全息光栅

随着全息激光技术的发展,出现了采用激光干涉照相法制作的衍射光栅,这种光栅称为全息光栅。
在磨制好的光栅毛坯上均匀涂布一层光敏物质,然后置于同一单色光源的两束激光干涉场中曝光。把明暗相同的干涉条纹记录在光敏层上。将已爆光的坯基浸入一种特殊的溶液中,涂层各部分由于所接受的曝光量不同而受到不同程度的溶蚀,从而在坯基上出现了与干涉条纹相当的槽线,最后在真空中镀上反射铝膜和保护膜就制成全息光栅。
全息光栅的特点为:
(1)无鬼线,杂散光极小。
(2)衍射效率较低,全息光栅的槽形通常为近似正弦波形,这种槽形不具备闪耀条件,没有明显的闪耀特性。据称,采用“离子蚀刻”技术的全息光栅,使光栅衍射效率得到较大提高。
(3)分辨率高。由于全息技术使光栅刻线总数大幅度增加,因此色散率、分辨率也大幅度得到提高。
(0)

相关推荐

  • 拉曼光谱仪光谱分辨率的影响因素(一)

    拉曼光谱仪光谱分辨率的影响因素(一) 摘要 光谱分辨率R是拉曼光谱仪性能指标之中的一项重要参数,它直接决定了拉曼光谱仪能分辨的最小波长,其定义为R=λ/∆λ,该式子中 ∆λ表示光谱仪在波长为λ时能区分 ...

  • 【每天美玉】——殷墟妇好墓出土玉环、玉戈、玉铲鉴赏

    殷墟妇好墓玉环 此件商代晚期玉环1976年出土于妇好墓,现藏于中国社会科学院考古研究所.玉环外径49.11毫米,内径12.67毫米,最厚处5.26毫米,最薄处2.79毫米,重量为17.707克.经红外 ...

  • 像差对光栅光谱仪光谱分辨力的影响分析

    基于目前地基太阳望远镜光栅光谱仪的发展现状,结合光电所自适应光学技术优势,从理论上分析了波前像差对光栅光谱仪光谱展宽和能量利用率的影响, 提出了一种基于双波前传感器自适应光学技术的太阳光栅光谱测量方法 ...

  • 【仪器分析】ICP原子发射光谱构造与原理(五)

    检测器--光电转换器件 光电转换器件是光电光谱仪接收系统的核心部分,主要是利用光电效应将不同波长的辐射能转化成光电流的信号. 光电转换器件主要有两大类: 一类是光电发射器件,例如光电管与光电倍增管,当 ...

  • 仪器分析基础:ICP-MS构造与原理

    ICP-MS构造与原理 构造与工作原理 概述 ICP-MS全称是电感藕合等离子体质谱. Inductively Coupled Plasma Mass Spectrometry  它是一种将ICP技术 ...

  • 【仪器分析】原子发生光谱分析(基础理论)

    原子发生光谱分析, 看完它, 就知道和ICP-MS, 根本不是, 一类分析方法, ICP的在两种方法中作用完全不一样, 原子发射光谱的产生         物质通过电致激发.热致激发或光致激发等激发过 ...

  • 仪器分析基础:ICP-MS的工作原理与干扰原理

    ICP-MS 构造原理与干扰 构造与干扰 〇. 一般 ICP-MS分析包括下面几个步骤: ① 原子化 ② 将原子化的原子大部分转化为离子 ③ 离子按照质荷比分离 ④ 计数各种离子的数目 原理: 雾化器 ...

  • 仪器分析基础:ICP-AES仪器构造与原理

    原子发射光谱法仪 原子发射光谱法仪器分为三部分: 光源.光谱仪和检测器. (1) 光源 光源具有使试样蒸发.解离.原子化.激发.跃迁产生光辐射的作用.光源对光谱分析的检出限.精密度和准确度都有很大的影 ...

  • 26种仪器分析的原理及谱图方法大全

    来源:医疗人咖啡 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置.强度和形状,提供分子中不同电子结构的信息 分析原理:被 ...

  • 仪器分析基础:ICP-MS雾化器的分类与原理

    ICP-MS雾化器 分类与工作原理 典型的雾化器: 同心雾化器:交叉流雾化器:高盐雾化器 一.玻璃同心雾化器 又称迈恩哈德雾(Meinhard)化器,一般是由硼硅酸盐玻璃吹制的,是ICP质谱分析中最常 ...

  • 胎压监控系统的构造、原理、常见故障

    外观.结构与安装位置 工作原理与作用 处于静止模式(车轮静止)15min 后,只要车轮电子装置识别出车速超过20km/h,就会开始以自适应模式发送信号.在自适应模式下,在9min 内每隔15s(40 ...

  • 离子色谱仪的构造、原理、操作与故障排除

    离子色谱仪结构及工作原理 离子色谱仪虽然市场上种类繁多,但是其结构主要包括泵液系统.进样系统.色谱分离柱.检测器.数据处理五个部分组成. 离子色谱仪工作原理:充分利用固定相与流动相间的交换作用,固定相 ...