ThreadLocal为什么会内存泄漏
转自https://www.jianshu.com/p/a1cd61fa22da
thewindkee个人总结:如果线程使用线程池或者Thread长时间不会消亡,其内部的threadLocalMap也一直存在。而thread.threadLocalMap.set(threadLocal,value)。 这里threadLocal为弱引用,(ThreadLocal#ThreadLocalMap#new Entry(threadLocal)产生的弱引用weakRef),value为强引用。 Entry中弱引用key对应的threadLocal 会在gc的时候 回收,因此value对应的key会变成null.value对应的内存就无法再被访问,已经泄露了。不过好在threadLocal中 expungeStaleEntry(threadLocal调用get/set/remove触发) 会清除key为null的value,一定程度解决了内存泄漏的问题。
ps:当threadLocal 不为静态变量,且被回收的时候才会导致weakRef为null。
ThreadLocal原理回顾
ThreadLocal的原理:每个Thread内部维护着一个ThreadLocalMap,它是一个Map。这个映射表的Key是一个弱引用,其实就是ThreadLocal本身,Value是真正存的线程变量Object。
也就是说ThreadLocal本身并不真正存储线程的变量值,它只是一个工具,用来维护Thread内部的Map,帮助存和取。注意上图的虚线,它代表一个弱引用类型,而弱引用的生命周期只能存活到下次GC前。
ThreadLocal为什么会内存泄漏
ThreadLocal在ThreadLocalMap中是以一个弱引用身份被Entry中的Key引用的,因此如果ThreadLocal没有外部强引用来引用它,那么ThreadLocal会在下次JVM垃圾收集时被回收。这个时候就会出现Entry中Key已经被回收,出现一个null Key的情况,外部读取ThreadLocalMap中的元素是无法通过null Key来找到Value的。因此如果当前线程的生命周期很长,一直存在,那么其内部的ThreadLocalMap对象也一直生存下来,这些null key就存在一条强引用链的关系一直存在:Thread --> ThreadLocalMap-->Entry-->Value,这条强引用链会导致Entry不会回收,Value也不会回收,但Entry中的Key却已经被回收的情况,造成内存泄漏。
但是JVM团队已经考虑到这样的情况,并做了一些措施来保证ThreadLocal尽量不会内存泄漏:在ThreadLocal的get()、set()、remove()方法调用的时候会清除掉线程ThreadLocalMap中所有Entry中Key为null的Value,并将整个Entry设置为null,利于下次内存回收。
来看看ThreadLocal的get()方法底层实现
public T get() {Thread t = Thread.currentThread();ThreadLocalMap map = getMap(t);if (map != null) {ThreadLocalMap.Entry e = map.getEntry(this);if (e != null)return (T)e.value;}return setInitialValue();}
在调用map.getEntry(this)时,内部会判断key是否为null,继续看map.getEntry(this)源码
private Entry getEntry(ThreadLocal key) {int i = key.threadLocalHashCode & (table.length - 1);Entry e = table[i];if (e != null && e.get() == key)return e;elsereturn getEntryAfterMiss(key, i, e);}
在getEntry方法中,如果Entry中的key发现是null,会继续调用getEntryAfterMiss(key, i, e)方法,其内部回做回收必要的设置,继续看内部源码:
private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {Entry[] tab = table;int len = tab.length;while (e != null) {ThreadLocal k = e.get();if (k == key)return e;if (k == null)expungeStaleEntry(i);elsei = nextIndex(i, len);e = tab[i];}return null;}
注意k == null这里,继续调用了expungeStaleEntry(i)方法,expunge的意思是擦除,删除的意思,见名知意,在来看expungeStaleEntry方法的内部实现:
private int expungeStaleEntry(int staleSlot) {Entry[] tab = table;int len = tab.length;// expunge entry at staleSlot(意思是,删除value,设置为null便于下次回收)tab[staleSlot].value = null;tab[staleSlot] = null;size--;// Rehash until we encounter nullEntry e;int i;for (i = nextIndex(staleSlot, len);(e = tab[i]) != null;i = nextIndex(i, len)) {ThreadLocal k = e.get();if (k == null) {e.value = null;tab[i] = null;size--;} else {int h = k.threadLocalHashCode & (len - 1);if (h != i) {tab[i] = null;// Unlike Knuth 6.4 Algorithm R, we must scan until// null because multiple entries could have been stale.while (tab[h] != null)h = nextIndex(h, len);tab[h] = e;}}}return i;}
注意这里,将当前Entry删除后,会继续循环往下检查是否有key为null的节点,如果有则一并删除,防止内存泄漏。
但这样也并不能保证ThreadLocal不会发生内存泄漏,例如:
使用static的ThreadLocal,延长了ThreadLocal的生命周期,可能导致的内存泄漏。
分配使用了ThreadLocal又不再调用get()、set()、remove()方法,那么就会导致内存泄漏。
为什么使用弱引用?
从表面上看,发生内存泄漏,是因为Key使用了弱引用类型。但其实是因为整个Entry的key为null后,没有主动清除value导致。很多文章大多分析ThreadLocal使用了弱引用会导致内存泄漏,但为什么使用弱引用而不是强引用?
官方文档的说法:
To help deal with very large and long-lived usages, the hash table entries use WeakReferences for keys.
为了处理非常大和生命周期非常长的线程,哈希表使用弱引用作为 key。
下面我们分两种情况讨论:
key 使用强引用:引用的ThreadLocal的对象被回收了,但是ThreadLocalMap还持有ThreadLocal的强引用,如果没有手动删除,ThreadLocal不会被回收,导致Entry内存泄漏。
key 使用弱引用:引用的ThreadLocal的对象被回收了,由于ThreadLocalMap持有ThreadLocal的弱引用,即使没有手动删除,ThreadLocal也会被回收。value在下一次ThreadLocalMap调用set,get,remove的时候会被清除。
比较两种情况,我们可以发现:由于ThreadLocalMap的生命周期跟Thread一样长,如果都没有手动删除对应key,都会导致内存泄漏,但是使用弱引用可以多一层保障:弱引用ThreadLocal不会内存泄漏,对应的value在下一次ThreadLocalMap调用set,get,remove的时候会被清除。
因此,ThreadLocal内存泄漏的根源是:由于ThreadLocalMap的生命周期跟Thread一样长,如果没有手动删除对应key的value就会导致内存泄漏,而不是因为弱引用。
总结
综合上面的分析,我们可以理解ThreadLocal内存泄漏的前因后果,那么怎么避免内存泄漏呢?
每次使用完ThreadLocal,都调用它的remove()方法,清除数据。
在使用线程池的情况下,没有及时清理ThreadLocal,不仅是内存泄漏的问题,更严重的是可能导致业务逻辑出现问题。所以,使用ThreadLocal就跟加锁完要解锁一样,用完就清理。
作者:Misout
链接:https://www.jianshu.com/p/a1cd61fa22da
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。