中考真题汇编之几何综合压轴题

一.解答题(共50小题)

1.(2020·天水)性质探究

如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为   .

理解运用

(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为   ;

(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.

类比拓展

顶角为2α的等腰三角形的底边与一腰的长度之比为   .(用含α的式子表示)

2.(2020·青海)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.

特例感知:

(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.

猜想论证:

(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.

联系拓展:

(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

3.(2020·河北)如图1和图2,在△ABC中,AB=AC,BC=8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.

(1)当点P在BC上时,求点P与点A的最短距离;

(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;

(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);

(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.

4.(2020·襄阳)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.

(1)特例发现:如图1,当AD=AF时,

①求证:BD=CF;

②推断:∠ACE=   °;

(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;

(3)拓展运用:如图3,在(2)的条件下,当时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK,求DF的长.

5.(2020·牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:

(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)

(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;

(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=   .

6.(2020·辽阳)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.

(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;

(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;

(3)当α=120°,tan∠DAB时,请直接写出的值.

7.(2020·凉山州)如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.

(1)如图1,连接AQ、CP.求证:△ABQ≌△CAP;

(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;

(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.

8.(2020·泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.

探究发现:

(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?   .(填“是”或“否”)

拓展延伸:

(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

问题解决:

(3)若AB=6,CE=9,求AD的长.

9.(2020·常德)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.

(1)如图1,当D,B,F共线时,求证:

①EB=EP;

②∠EFP=30°;

(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.

10.(2020·黔东南州)如图1,△ABC和△DCE都是等边三角形.

探究发现

(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.

拓展运用

(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.

(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.

11.(2020·金华)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.

(1)求BC边上的高线长.

(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.

①如图2,当点P落在BC上时,求∠AEP的度数.

②如图3,连结AP,当PF⊥AC时,求AP的长.

12.(2020·江西)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:

类比探究

(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为   ;

推广验证

(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;

拓展应用

(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE,求五边形ABCDE的面积.

13.(2020·衡阳)如图1,平面直角坐标系xOy中,等腰△ABC的底边BC在x轴上,BC=8,顶点A在y的正半轴上,OA=2,一动点E从(3,0)出发,以每秒1个单位的速度沿CB向左运动,到达OB的中点停止.另一动点F从点C出发,以相同的速度沿CB向左运动,到达点O停止.已知点E、F同时出发,以EF为边作正方形EFGH,使正方形EFGH和△ABC在BC的同侧,设运动的时间为t秒(t≥0).

(1)当点H落在AC边上时,求t的值;

(2)设正方形EFGH与△ABC重叠面积为S,请问是否存在t值,使得S?若存在,求出t值;若不存在,请说明理由;

(3)如图2,取AC的中点D,连结OD,当点E、F开始运动时,点M从点O出发,以每秒2个单位的速度沿OD﹣DC﹣CD﹣DO运动,到达点O停止运动.请问在点E的整个运动过程中,点M可能在正方形EFGH内(含边界)吗?如果可能,求出点M在正方形EFGH内(含边界)的时长;若不可能,请说明理由.

14.(2020·青岛)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).

解答下列问题:

(1)当t为何值时,点M在线段CQ的垂直平分线上?

(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;

(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;

(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.

15.(2020·山西)综合与实践

问题情境:

如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.

猜想证明:

(1)试判断四边形BE'FE的形状,并说明理由;

(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;

解决问题:

(3)如图①,若AB=15,CF=3,请直接写出DE的长.

16.(2020·内江)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.

(1)连结CQ,求证:AP=CQ;

(2)若APAC,求CE:BC的值;

(3)求证:PF=EQ.

17.(2020·郴州)如图1,在等腰直角三角形ADC中,∠ADC=90°,AD=4.点E是AD的中点,以DE为边作正方形DEFG,连接AG,CE.将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<90°).

(1)如图2,在旋转过程中,

①判断△AGD与△CED是否全等,并说明理由;

②当CE=CD时,AG与EF交于点H,求GH的长.

(2)如图3,延长CE交直线AG于点P.

①求证:AG⊥CP;

②在旋转过程中,线段PC的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

18.(2020·湘西州)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.

小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是   ;

探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;

探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;

实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.

19.(2020·扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.

(1)求证:OC∥AD;

(2)如图2,若DE=DF,求的值;

(3)当四边形ABCD的周长取最大值时,求的值.

20.(2020·临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.

(1)求证:AF=EF;

(2)求MN+NG的最小值;

(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?

21.(2020·岳阳)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.

(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;

(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;

(3)如图3,当ts时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求的值.

22.(2020·天津)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).

(Ⅰ)如图①,当OP=1时,求点P的坐标;

(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.

①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接写出t的取值范围;

②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).

23.(2020·南京)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.

(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.

为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.

(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).

①生态保护区是正方形区域,位置如图③所示;

②生态保护区是圆形区域,位置如图④所示.

24.(2020·河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.

(1)如图1,当α=60°时,△DEB′的形状为   ,连接BD,可求出的值为   ;

(2)当0°<α<360°且α≠90°时,

①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;

②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.

25.(2020·达州)(1)[阅读与证明]

如图1,在正△ABC的外角∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.

①完成证明:∵点E是点C关于AM的对称点,

∴∠AGE=90°,AE=AC,∠1=∠2.

∵正△ABC中,∠BAC=60°,AB=AC,

∴AE=AB,得∠3=∠4.

在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3=   °.

在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=   °.

②求证:BF=AF+2FG.

(2)[类比与探究]

把(1)中的“正△ABC”改为“正方形ABDC”,其余条件不变,如图2.类比探究,可得:

①∠FEG=   °;

②线段BF、AF、FG之间存在数量关系   .

(3)[归纳与拓展]

如图3,点A在射线BH上,AB=AC,∠BAC=α(0°<α<180°),在∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.则线段BF、AF、GF之间的数量关系为   .

26.(2020·齐齐哈尔)综合与实践

在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.

实践发现:

对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.

(1)折痕BM   (填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:   ;进一步计算出∠MNE=   °;

(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=   °;

拓展延伸:

(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.

求证:四边形SATA'是菱形.

解决问题:

(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.

请写出以上4个数值中你认为正确的数值   .

27.(2020·济宁)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).

(1)求证:△AEH≌△AGH;

(2)当AB=12,BE=4时.

①求△DGH周长的最小值;

②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.

28.(2020·泰州)如图,正方形ABCD的边长为6,M为AB的中点,△MBE为等边三角形,过点E作ME的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ=60°,连接PQ.

(1)求证:△MEP≌△MBQ.

(2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.

(3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.

29.(2020·安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.

(1)求证:BD⊥EC;

(2)若AB=1,求AE的长;

(3)如图2,连接AG,求证:EG﹣DGAG.

30.(2020·绥化)如图,在正方形ABCD中,AB=4,点G在边BC上,连接AG,作DE⊥AG于点E,BF⊥AG于点F,连接BE、DF,设∠EDF=α,∠EBF=β,k.

(1)求证:AE=BF;

(2)求证:tanα=k·tanβ;

(3)若点G从点B沿BC边运动至点C停止,求点E,F所经过的路径与边AB围成的图形的面积.

31.(2020·德州)问题探究:

小红遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使DE=AD,连接BE,证明△BED≌△CAD,经过推理和计算使问题得到解决.

请回答:(1)小红证明△BED≌△CAD的判定定理是:   ;

(2)AD的取值范围是   ;

方法运用:

(3)如图2,AD是△ABC的中线,在AD上取一点F,连结BF并延长交AC于点E,使AE=EF,求证:BF=AC.

(4)如图3,在矩形ABCD中,,在BD上取一点F,以BF为斜边作Rt△BEF,且,点G是DF的中点,连接EG,CG,求证:EG=CG.

32.(2020·乐山)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.

(1)如图1,当点P与点O重合时,线段OE和OF的关系是   ;

(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?

(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.

33.(2020·成都)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.

(1)如图1,若BC=2BA,求∠CBE的度数;

(2)如图2,当AB=5,且AF·FD=10时,求BC的长;

(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求的值.

34.(2020·贵阳)如图,四边形ABCD是正方形,点O为对角线AC的中点.

(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是   ,位置关系是   ;

(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;

(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.

35.(2020·黑龙江)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A作AM⊥BC于M,延长MA交EG于点N.

(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;

(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.

36.(2020·衢州)【性质探究】

如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.

(1)判断△AFG的形状并说明理由.

(2)求证:BF=2OG.

【迁移应用】

(3)记△DGO的面积为S1,△DBF的面积为S2,当时,求的值.

【拓展延伸】

(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.

37.(2020·嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.

活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.

【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.

【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.

活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).

【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.

38.(2020·孝感)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.

(1)如图1,若α=60°,

①直接写出的值为   ;

②当⊙O的半径为2时,直接写出图中阴影部分的面积为   ;

(2)如图2,若α<60°,且,DE=4,求BE的长.

39.(2020·鄂州)如图所示:⊙O与△ABC的边BC相切于点C,与AC、AB分别交于点D、E,DE∥OB.DC是⊙O的直径.连接OE,过C作CG∥OE交⊙O于G,连接DG、EC,DG与EC交于点F.

(1)求证:直线AB与⊙O相切;

(2)求证:AE·ED=AC·EF;

(3)若EF=3,tan∠ACE时,过A作AN∥CE交⊙O于M、N两点(M在线段AN上),求AN的长.

40.(2020·长沙)如图,半径为4的⊙O中,弦AB的长度为4,点C是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.

(1)求∠AOB的度数;

(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;

(3)分别记△ODE,△CDE的面积为S1,S2,当S12﹣S22=21时,求弦AC的长度.

41.(2020·广元)在Rt△ABC中,∠ACB=90°,OA平分∠BAC交BC于点O,以O为圆心,OC长为半径作圆交BC于点D.

(1)如图1,求证:AB为⊙O的切线;

(2)如图2,AB与⊙O相切于点E,连接CE交OA于点F.

①试判断线段OA与CE的关系,并说明理由.

②若OF:FC=1:2,OC=3,求tanB的值.

42.(2020·连云港)(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=   ;

(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);

(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);

(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、围成的封闭图形的面积为S1,PA、PD、围成的封闭图形的面积为S2,△PBD的面积为S3,△PAC的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).

43.(2020·内江)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.

(1)求证:BE是⊙O的切线;

(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;

(3)在(2)的条件下,求阴影部分的面积.

44.(2020·哈尔滨)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.

(1)如图1,求证:∠BFC=3∠CAD;

(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;

(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.

45.(2020·成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.

(1)求证:AC是⊙O的切线;

(2)若AB=10,tanB,求⊙O的半径;

(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.

46.(2020·遂宁)如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.

(1)求证:BC是⊙O的切线.

(2)求证:.

(3)若sin∠ABC═,AC=15,求四边形CHQE的面积.

47.(2020·台州)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.

(1)求证:△BEF是直角三角形;

(2)求证:△BEF∽△BCA;

(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.

48.(2020·杭州)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.

(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.

(2)连接BF,DF,设OB与EF交于点P,

①求证:PE=PF.

②若DF=EF,求∠BAC的度数.

49.(2020·宁波)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.

(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.

(2)如图2,四边形ABCD内接于⊙O,,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.

(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.

①求∠AED的度数;

②若AB=8,CD=5,求△DEF的面积.

50.(2020·苏州)如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.

(1)求OP+OQ的值;

(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.

(3)求四边形OPCQ的面积.

(0)

相关推荐