压轴题打卡145:圆有关的综合题分析 2024-06-23 00:29:22 如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣√3),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.参考答案:考点分析:圆的综合题.题干分析:(1)过点B作BE⊥AD,垂足为E.由点A和点B的坐标可知:BE=√3,AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记⊙M与x轴的切线为F,AD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B作BE⊥AD,垂足为E,连接MF,F为⊙M与AD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5﹣AE可求得t的值;如图5所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=√3/3,最后依据3t+2t=5+AE.列方程求解即可.解题反思:本题主要考查的是圆的综合应用,解答本题主要应用了切线的性质、切线长定理、菱形的性质、特殊锐角三角函数值、勾股定理的应用根据题意列出关于t的方程是解题的关键. 赞 (0) 相关推荐 2020中考真题锐角三角函数合集 2020中考真题锐角三角函数合集 压轴题打卡51:反比例函数综合题 如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=k/x(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=3OB ... 压轴题打卡20:二次函数的综合题 如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx﹣3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称. (1)求抛物线的解析式及顶点C的 ... 压轴题打卡103:圆有关的综合题 如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N. (1)求证:CF是⊙O的切线: (2)求证:△ACM∽△DCN ... 压轴题打卡102:圆有关的综合问题分析 已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB. (1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°: (2)如图②,若∠BAC= ... 压轴题打卡133:圆有关的综合题分析 如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D垂直于AC的直线交AC的延长线于点E. (1)求证:DE是⊙O的切线: (2)如果AD=5,AE=4,求AC长. 参考 ... 压轴题打卡61:圆有关的综合问题分析 如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF. (1)求证:AB是⊙O的切线: (2)若CF=4,DF= ... 压轴题打卡143:圆有关的综合题分析 已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3. (1)求证:AF=DF: (2)求∠A ... 压轴题打卡151:圆有关的综合题分析 在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC.OD分别与OA.OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC.BD也随之变化,设旋 ... 压轴题打卡153:圆有关的综合题分析 如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C. (1)试判断线段AB与AC的数量关系,并说明理由: (2)若PC=2√5 ...