【2021中考真题19】菏泽压轴——第23题(动点路径)

01
山东菏泽第23题

双平等腰模型

△EPF为等腰三角形不变

因为AE=CD,故DE=BF,所以DE=EH=BF,又因为PE=PF,所以PH=PB

根据PH=PB,可证△PHM≌△PBM,则∠HPM=∠BPM,又因为PE=PF,由“三线合一”可知PO是EF的垂直平分线,故点M在EF的垂直平分线上

变中不变,动线过定点,连接BD交EF于点Q,易证BQ=DQ,故EF必过定点Q

旋转变换想隐圆,连接QG、QC,则QG=QC=5,则点G在以Q为圆心,5为半径的圆弧上,E在A时点G与点C重合,当E到AD中点P时,点G与B重合,故点G的运动路径是下图中弧BC的长,圆心角∠BQC=120°,半径QC=5,根据弧长公式计算即可求解

本题关键是确定动线EF在运动过程中过矩形ABCD的中心Q是解题的关键,体现了解决动态运动问题的根本策略即“变中不变”

(0)

相关推荐