神外前沿讯,2020年1月30日,国际一流学术期刊《Science》在线发表了一篇对脑卒中形成机制的重大研究进展,该研究发现脑脊液涌入导致急性缺血性组织肿胀,颠覆了以前人们认为的血管内液体渗出是水肿的原因。
这篇文章题为:Cerebrospinal fluid influx drives acute ischemic tissue swelling;主要研究者为美国罗切斯特大学医学中心Maiken Nedergaard、丹麦哥本哈根大学Yuki Mori等。
研究人员使用磁共振成像、放射性标记示踪剂以及啮齿动物中的多光子成像,发现大脑周围的脑脊液在缺血性损伤后几分钟内沿着血管周围的流动通道进入组织。
该过程是由缺血性扩散去极化以及随后的血管收缩引发的,血管收缩随后又扩大了血管周间隙,并使淋巴管的流入速度增加了一倍。
因此,人们对脑卒中后水肿的理解需要修改,这些发现可以为替代治疗策略的开发提供概念基础。
脑卒中每年影响数百万人,脑卒中后的脑水肿可预测最终脑卒中的严重程度,但人们对水肿如何发展的认识尚不完善,因此治疗选择仍然有限。
这个工作是由提出glymphatic system 的 Maiken Nedergaard 教授实验室完成的,他们用多种成像方法,包括核磁共振、放射标记和多光子成像研究小鼠卒中模型,并发现脑脊液的流动增加是引起水肿的主要原因,颠覆了以前认为的血管内液体渗出是水肿的原因,对卒中的机制和治疗有革命性的影响
美国南加州大学功能影像实验室主任王炯炯教授(Danny JJ Wang,PhD)
美国University of Rochester大学Nedergaard教授领导的实验室通过长期对脑缺血后病理生理机制变化的研究,在动物模型中发现脑缺血发生后脑脊液向缺血区域的流动,造成了脑组织的肿胀。这一发现与传统认为脑水肿的两种主要形成机制-细胞毒性脑水肿和血管源性脑水肿有很大不同。这一项刊登在最近一期Science杂志的重要发现对于指导卒中后脑水肿的防治提供了新的思路。下一步需要利用类似的影像学技术,在临床上对缺血性脑卒中病人进行更多的验证。
北京天坛医院/北大国际医院 神经外科 赵元立 教授
CSF cisternography during middle cerebral artery occlusion (MCAO). Mice thatreceived a right MCAO (left panel) or sham controls (right panel) were imaged using 3D-FIESTA MRI.Cisternography revealed that ventricular and subarachnoid CSF (blue) in the ventricles and cisternamagna (yellow arrows) disappeared after stroke, primarily in the ipsilateral hemisphere. PerivascularCSF (red) volume decreased at later timepoints. The brain tissue/blood compartment (green)increased in volume at the expense of CSF volume decreasing, suggesting that CSF shifts into thiscompartment. There were no time-dependent changes in the sham mice. Scale bar: 2 mm.
AbstractStroke affects millions each year. Post-stroke brain edema predicts the severity of eventual stroke damage, yet our concept of how edema develops is incomplete and treatment options remain limited. In early stages, fluid accumulation occurs owing to a net gain of ions, widely thought to enter from the vascular compartment. Here we used magnetic resonance imaging, radiolabeled tracers, and multiphoton imaging in rodents, to show instead that cerebrospinal fluid surrounding the brain enters the tissue within minutes of an ischemic insult along perivascular flow channels. This process was initiated by ischemic spreading depolarizations along with subsequent vasoconstriction, which in turn enlarged the perivascular spaces and doubled glymphatic inflow speeds. Thus, our understanding of post-stroke edema needs to be revised and these findings could provide a conceptual basis for development of alternative treatment strategies.
DOI: 10.1126/science.aax7171