圆 的各种定义
摘自《解析几何高观点、新视野》
一、圆的距离定义
(一)第一定义:到定点等于定长点的轨迹
例 1.若与点 A (2, 2) 的距离为 1 且与点 B ( m , 0) 的距离为 3 的直线恰有两条,则实数 m 的取值范围为__________.
【解析】与定点 A 距离为 1 的点的轨迹为圆,所以与点 A (2, 2) 的距离为 1 的直线为圆的切线,同理与点 B ( m , 0) 的距离为 3 的直线也为以 B 为圆心,3 为半径的圆的切线,故同时满足两个条件的直线应该使两圆的公切线,公切线恰有 2 条,意味着两圆相交,即
(二)第二定义:到两定点距离的平方和为定值点的轨迹
(三)第三定义:到两定点距离之比为一个不为 1 的常数。(阿波罗尼斯圆)
二、圆的张角定义
(一)第四定义:到两定点张角为 90°
变式 2:如图,直角三角形 ABC 中,角 C 为直角,AC=4,AB=5,在线段 AC 上有一动点 P,以 PC 为直径作圆交 PB 于点 Q,连结 AQ,则 AQ 的最小值为________.
(三)第六定义:对角互补
三、圆中弦中点的轨迹
命题 1:(1)过圆外一定点 P 作圆 O 的动弦,弦中点的轨迹是以 OP 为直径的圆位于圆 O 内部的一段圆弧。
(2)过圆内一定点 P 作圆 O 的动弦,弦中点的轨迹是以 OP 为直径的圆。
(3)定点 P 与半径为 R 的圆 O 上一动点连线的中点的轨迹是以 OP 中点为圆心,
为半径的圆。(相关点法可以证明。)
命题 2:圆内一动弦与圆内一定点张角为 90°,则动弦中点的轨迹为圆。
四、代数中其他的圆
(一)三角函数
赞 (0)