基于OpenCV实战:动态物体检测

重磅干货,第一时间送达

最近,闭路电视安全系统运行着多种算法来确保安全,例如面部识别,物体检测,盗窃检测,火灾警报等。我们在运动检测的基础上实现了许多算法,因为在空闲帧上运行所有这些进程没有任何意义。在本文中,我们将讨论实现基于运动检测的视频保存。

安装依赖库
OpenCV:pip install opencv-python
基本动作检测
在这里,我们将讨论代码和对如何在后台工作的基本理解。在计算机视觉中,我们把运动看作是环境的变化。为了计算转换,我们必须有一个背景图像来比较。所以,我们在程序的开头保存第一个图像。
# Converting the image to GrayScalegray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray,(21,21),0)# Saving the First Frameif first_frame is None: first_frame = gray continue

然后,我们将后续帧与保存的第一帧进行比较,以观察差异。计算完差异后,我们可以应用阈值将其转换为黑白图像。

#Calculates difference to detect motiondelta_frame = cv2.absdiff(first_frame, gray)#Applies Threshold and converts it to black & white imagethresh_delta = cv2.threshold(delta_frame, 30, 255, cv2.THRESH_BINARY)[1]thresh_delta = cv2.dilate(thresh_delta, None, iterations=0)#finding contours on the white portion(made by the threshold)cnts,_ = cv2.findContours(thresh_delta.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

最后一个命令在该黑白图像中查找轮廓,并给出用于创建边界框的坐标,如上面的视频所示。使用运动检测的好处:

  1. 它不会保存无用的空闲镜头。因此,减少了其他算法的工作量,因为不会保存空闲帧进行处理。

  2. 它需要较少的计算,并且适合实时实施。

阻碍与解决方案

给定的因素导致轮廓检测不理想,运动检测的幼稚方法会在执行开始时为所有比较保存第一帧。不好有几个原因:

  • 白天的照明条件可能会改变。

  • 天气变化。

  • 执行时相机被遮挡。

解决方案:在没有运动的情况下,可以通过定期定期更新保存的帧来轻松解决此问题。

# Number of idle frames to pass before changing the saved frame # for further comparisionsFRAMES_TO_PERSIST = 1000

然后将其放在while循环中:

#increment delay counter for every idle framedelay_counter += 1#Update the saved first frameif delay_counter > FRAMES_TO_PERSIST: delay_counter = 0 first_frame = next_frame

当检测到运动时,将delay_counter设置为零,微小的物体(例如蜜蜂和昆虫)和通常不必要的轻微不必要的运动被存储起来。解决方案:如片段所示,我们应该在该区域设置一个阈值。

# Minimum boxed area(in pixels) for a detected motion to count as actual motion# Use to filter out noise or small objectsMIN_SIZE_FOR_MOVEMENT = 2000

然后在while循环中放置一个if语句:

#Checks if the area is big enough to be considered as motion.if cv2.contourArea(c) > MIN_SIZE_FOR_MOVEMENT: #Your code
各种平台上的基准:

所有这些都是针对同一视频(30-fps,1280x720)计算的。

Raspberry Pi 2:

  • 规格
  • 1.5 GHz处理器
  • 1 GB内存
  • 没有GPU
  • FPS:每秒8.08帧

Jetson Nano:

  • 规格
  • 四核ARM处理器1.43Ghz
  • 2 Gb内存
  • GPU:128核心Nvidia Maxwell
  • FPS:每秒33帧

个人电脑 :

  • 规格
  • i7第八代处理器
  • 16 GB内存
  • GTX 1060 6 GB GPU
  • FPS:每秒37帧

潜在应用:

智能铃:

如果有人站在您家门口,它将自动触发铃声,并向您发送提示。

潜在威胁警报:

如果有人站在您家门前的时间长于正常时间,它将提醒您。

结论

在本文中,我们实现了一个非常基本但重要的算法,可用于有效运行所有其他算法。可以对该运动检测算法进行更多修改,以使其更加健壮。

下载1:OpenCV-Contrib扩展模块中文版教程
(0)

相关推荐

  • python+opencv图像处理(十九)

    视频的读入和显示 在图像处理中,视频处理是其中的重要一环,本篇介绍视频的读入和显示. 1.视频读入 Opencv中有自带的函数可以实现视频的读入和显示,代码如下: 视频其实也就是一帧一帧的图像,所以在 ...

  • 使用opencv进行实时人脸 眼睛 微笑检测

    代码: import cv2# 导入级联分类器引擎face_cascade = cv2.CascadeClassifier("opencv-master\data\haarcascades\ ...

  • 基于OpenCV实战:车牌检测

    重磅干货,第一时间送达 拥有思维导图或流程将引导我们朝着探索和寻找实现目标的正确道路的方向发展.如果要给我一张图片,我们如何找到车牌并提取文字? 一般思维步骤: 识别输入数据是图像. 扫描图像以查看由 ...

  • 基于OpenCV的面部关键点检测实战

    重磅干货,第一时间送达 这篇文章概述了用于构建面部关键点检测模型的技术,这些技术是Udacity的AI Nanodegree程序的一部分. 概述 在Udacity的AIND的最终项目中,目标是创建一个 ...

  • 基于OpenCV实战的图像处理:色度分割

    重磅干货,第一时间送达 通过HSV色阶使用彩色图像可以分割来分割图像中的对象,但这并不是分割图像的唯一方法.为什么大多数人偏爱色度而不是RGB / HSV分割? 可以获得RGB / HSV通道之间的比 ...

  • 基于OpenCV实战:绘制图像轮廓(附代码)

    重磅干货,第一时间送达 山区和地形图中海拔高的区域划出的线称为地形轮廓,它们提供了地形的高程图.这些线条可以手动绘制,也可以由计算机生成.在本文中,我们将看到如何使用OpenCV在简单图像上绘制轮廓线 ...

  • 基于OpenCV实战:对象跟踪

    重磅干货,第一时间送达 介绍 跟踪对象的基本思想是找到对象的轮廓,基于HSV颜色值. 轮廓:突出显示对象的图像片段.例如,如果将二进制阈值应用于具有(180,255)的图像,则大于180的像素将以白色 ...

  • 基于OpenCV的路面质量检测

    重磅干货,第一时间送达 路面分类 01.RTK数据集 02.路面类型分类 训练数据文件夹结构 classes = os.listdir('training_data')num_classes = le ...

  • 基于OpenCV的实时睡意检测系统

    重磅干货,第一时间送达 该系统可以检测一个人在开车时是否困倦,如果有的话,可以通过使用语音消息实时提醒他.该系统使用网络摄像头和电话摄像头进行实时数据传输. 01.研究目的 根据国家公路交通安全管理局 ...

  • MaskRCNN 基于OpenCV DNN的目标检测与实例分割

    原文:MaskRCNN 基于OpenCV DNN的目标检测与实例分割 - AIUAI 这里主要记录基于 OpenCV 4.x DNN 模块和 TensorFlow MaskRCNN 开源模型的目标检测 ...

  • 基于OpenCV的实战:轮廓检测(附代码解析)

    重磅干货,第一时间送达 利用轮廓检测物体可以看到物体的各种颜色,在这种情况下放置在静态和动态物体上.如果是统计图像,则需要将图像加载到程序中,然后使用OpenCV库,以便跟踪对象. 每当在框架中检测到 ...