Open3d 学习计划—11(使用NumPy)
Open3D是一个开源库,支持快速开发和处理3D数据。Open3D在c++和Python中公开了一组精心选择的数据结构和算法。后端是高度优化的,并且是为并行化而设置的。
本系列学习计划有Blue同学作为发起人,主要以Open3D官方网站的教程为主进行翻译与实践的学习计划。点云PCL公众号作为免费的3D视觉,点云交流社区,期待有使用Open3D或者感兴趣的小伙伴能够加入我们的翻译计划,贡献免费交流社区,为使用Open3D提供中文的使用教程。
使用NumPy
Open3d的数据结构天生的支持NumPy.下面教程将会使用NumPy生成一个sync函数的变体并且使用Open3d可视化出来.首先我们生成一个n×3的矩阵xyz,每一列的x,y,z都由一个函数
Z_norm是z在[0,1]区间的归一化映射.
# generate some neat n times 3 matrix using a variant of sync function
x = np.linspace(-3, 3, 401)
mesh_x, mesh_y = np.meshgrid(x, x)
z = np.sinc((np.power(mesh_x, 2) + np.power(mesh_y, 2)))
z_norm = (z - z.min()) / (z.max() - z.min())
xyz = np.zeros((np.size(mesh_x), 3))
xyz[:, 0] = np.reshape(mesh_x, -1)
xyz[:, 1] = np.reshape(mesh_y, -1)
xyz[:, 2] = np.reshape(z_norm, -1)
print('xyz')
print(xyz)
输出:
xyz
[[-3. -3. 0.17846472]
[-2.985 -3. 0.17440115]
[-2.97 -3. 0.17063709]
…
[ 2.97 3. 0.17063709]
[ 2.985 3. 0.17440115]
[ 3. 3. 0.17846472]]
从NumPy转为open3d.PointCloud
Open3d提供了从NumPy矩阵到3D向量的转换.使用Vector3dVector,能够直接将一个NumPy矩阵变为open3d.PointCloud.points.
通过这种方式,所有类似的数据结构比如open3d.PointCloud.colors 或 open3d.PointCloud.normals,都能直接使用NumPy赋值或者修改.以下代码将点云保存为ply格式以供下一步使用.
# Pass xyz to Open3D.o3d.geometry.PointCloud and visualize
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
o3d.io.write_point_cloud("../../TestData/sync.ply", pcd)
从open3d.PointCloud转为NumPy
如这个例程所示,Vector3dVector类型的pcd_load.points通过np.asarray直接转化为NumPy数组.
# Load saved point cloud and visualize it
pcd_load = o3d.io.read_point_cloud("../../TestData/sync.ply")
# convert Open3D.o3d.geometry.PointCloud to numpy array
xyz_load = np.asarray(pcd_load.points)
print('xyz_load')
print(xyz_load)
o3d.visualization.draw_geometries([pcd_load])
xyz_load
[[-3. -3. 0.17846472]
[-2.985 -3. 0.17440115]
[-2.97 -3. 0.17063709]
…
[ 2.97 3. 0.17063709]
[ 2.985 3. 0.17440115]
[ 3. 3. 0.17846472]]
资源
三维点云论文及相关应用分享
【点云论文速读】基于激光雷达的里程计及3D点云地图中的定位方法
3D-MiniNet: 从点云中学习2D表示以实现快速有效的3D LIDAR语义分割(2020)
PCL中outofcore模块---基于核外八叉树的大规模点云的显示
更多文章可查看:点云学习历史文章大汇总
SLAM及AR相关分享