基于OpenCV的网络实时视频流传输

重磅干货,第一时间送达

很多小伙伴都不会在家里或者办公室安装网络摄像头或监视摄像头。但是有时,大家又希望能够随时随地观看视频直播。
大多数人会选择使用IP摄像机(Internet协议摄像机)而不是CCTV(闭路电视),因为它们具有更高的分辨率并降低了布线成本。在本文中,我们将重点介绍IP摄像机。IP摄像机是一种数字 摄像机,可以通过IP网络接收控制数据并发送图像数据,并且不需要本地记录设备。大多数IP摄像机都是基于RTSP(实时流协议)的,因此Internet浏览器本身“不支持”它

01.如何使用Web浏览器查看实时流媒体

计算机视觉是一个跨学科领域,涉及如何制作计算机以从数字图像或视频获得高层次的理解。为了实现计算机视觉部分,我们将使用Python中的OpenCV模块,并在Web浏览器中显示实时流,我们将使用Flask Web框架。在进入编码部分之前,让我们首先简要地了解这些模块。如果您已经熟悉这些模块,则可以直接跳到下一部分。
根据Wikipedia的说法,Flask是用Python编写的微型Web框架。它被归类为微框架,因为它不需要特定的工具或库。它没有数据库抽象层,表单验证或任何其他现有的第三方库提供公用功能的组件。
根据GeeksForGeeks的说法,OpenCV是用于计算机视觉,机器学习和图像处理的巨大开放源代码库,现在它在实时操作中起着重要作用,这在当今的系统中非常重要。

02.操作步骤

第1步-安装Flask和OpenCV:

可以使用“ pip install flask”和“ pip install opencv-python ”命令。我使用PyCharm IDE开发flask应用程序。

第2步-导入必要的库,初始化flask应用程序:

现在,我们将导入必要的库并初始化我们的flask应用程序。
#Import necessary librariesfrom flask import Flask, render_template, Responseimport cv2#Initialize the Flask appapp = Flask(__name__)

第3步-使用OpenCV捕获视频:

创建一个VideoCapture()对象以触发相机并读取视频的第一个图像/帧。我们可以提供视频文件的路径,也可以使用数字来指定本地网络摄像头的使用。要触发网络摄像头,我们将“ 0”作为参数传递。为了从IP摄像机捕获实时源,我们提供RTSP链接作为参数。
camera = cv2.VideoCapture(0)'''for ip camera use - rtsp://username:password@ip_address:554/user=username_password='password'_channel=channel_number_stream=0.sdp' for local webcam use cv2.VideoCapture(0)'''
第4步-添加窗口并从相机生成帧:
gen_frames()函数进入一个循环,在该循环中,它不断从相机返回帧作为响应块。该函数要求摄像机提供一个帧,然后将其格式化为内容类型为的响应块,并使其屈服image/jpeg,如上所示。代码如下所示:
def gen_frames(): while True: success, frame = camera.read() # read the camera frame if not success: break else: ret, buffer = cv2.imencode('.jpg', frame) frame = buffer.tobytes() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') # concat frame one by one and show result

第5步-为网络应用的默认页面定义应用路由

路由指的是应用程序的URL模式(例如myapp.com/home或myapp.com/about)。@app.route("/")是Flask提供的Python装饰器,用于在我们的应用中分配URL以便轻松运行。
@app.route('/')def index(): return render_template('index.html')
装饰器告诉我们@app,只要用户访问给定的应用程序域(本地服务器的localhost:5000).route(),就执行该index()功能。Flask使用Jinja模板库渲染模板。在我们的应用程序中,我们将使用模板来呈现HTML,这些HTML将显示在浏览器中。

第6步-定义视频供稿的应用路由:

@app.route('/video_feed')def video_feed(): return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
“ / video_feed”路由返回流式响应。由于此流返回要在网页中显示的图像,因此路由的URL在image标记的“ src”属性中(请参见下面的“ index.html”)。浏览器将通过在其中显示JPEG图像流来自动更新图像元素,因为大多数/所有浏览器都支持多部分响应
让我们看一下我们的index.html文件:
<body><div class="container"> <div class="row"> <div class="col-lg-8 offset-lg-2"> <h3 class="mt-5">Live Streaming</h3> <img src="{{ url_for('video_feed') }}" width="100%"> </div> </div></div></body>

第7步-启动Flask服务器

if __name__ == "__main__": app.run(debug=True)
调用app.run()并将Web应用程序本地托管在[localhost:5000]上。
“ debug = True”可确保我们不需要在每次进行更改时都运行应用程序,只需在服务器仍在运行时刷新网页即可查看更改。
项目结构:
该项目保存在名为“摄像机检测”的文件夹中。我们运行“ app.py”文件。运行此文件后,我们的应用程序将托管在本地服务器的端口5000上。
  • 只需在运行“ app.py”后在网络浏览器中键入“ localhost:5000”即可打开您的网络应用程序
  • app.py —这是我们在上面创建的Flask应用程序
  • 模板-此文件夹包含我们的“ index.html”文件。在渲染模板时,这在Flask中是必需的。所有HTML文件都放在此文件夹下。
让我们看看当我们运行'app.py'时会发生什么:
在单击提供的URL时,我们的Web浏览器将打开实时供稿。由于我使用了上面的VideoCapture(0),因此网络摄像头摘要会显示在浏览器中:
中有来自IP摄像机/网络摄像机的实时视频流,可用于安全和监视目的。
代码链接:https://github.com/NakulLakhotia/Live-Streaming-using-OpenCV-Flask

交流群

(0)

相关推荐

  • opencv-开源计算机视觉python库

    OpenCV(开源计算机视觉库:opencv.org)是一个开放源代码库,其中包含数百种计算机视觉算法.该文档介绍了所谓的OpenCV 2.x API,与基于C的OpenCV 1.x API相比,它实 ...

  • Win10 darknet vs2015 GPU和CPU版本的配置

    在配置前需要准备的安装包: (1)VS2015 (2)Opencv3.4.6 (3)CUDA10.1和CUDNN7.6.1 (4)Darknet  这个可以下载大佬已经编译好的版本,省去自己操作一番的 ...

  • 基于OpenCV的视障人士实时目标检测

    重磅干货,第一时间送达 一.概述 计算机视觉领域一直是一个活跃的研究领域,在本文中,我们让设备实时与其应用程序(对象检测)相结合并运行. 二.硬件 设备:程序将在其上运行,由于该设备将安装在手杖上,并 ...

  • 基于OpenCV的实时睡意检测系统

    重磅干货,第一时间送达 该系统可以检测一个人在开车时是否困倦,如果有的话,可以通过使用语音消息实时提醒他.该系统使用网络摄像头和电话摄像头进行实时数据传输. 01.研究目的 根据国家公路交通安全管理局 ...

  • 基于OpenCV的实时停车地点查找

    重磅干货,第一时间送达 简介 我们常常会在停车场周围四处行驶很多次来寻找一个停车位,如果我们的电话可以准确告诉我们最近的停车位在哪里,那是不是很方便! 事实证明,使用深度学习和OpenCV解决这个问题 ...

  • 基于OpenCV的实时面部识别

    重磅干货,第一时间送达 我们将使用一些简单的代码来实现实时面部识别代码,我们可以对个人的面部进行预测. 现在,面部识别已成为生活中的一部分.因此,在介绍主题之前我们先看看实时面部识别示例.我们在手机. ...

  • 基于OpenCV实战:车牌检测

    重磅干货,第一时间送达 拥有思维导图或流程将引导我们朝着探索和寻找实现目标的正确道路的方向发展.如果要给我一张图片,我们如何找到车牌并提取文字? 一般思维步骤: 识别输入数据是图像. 扫描图像以查看由 ...

  • 基于OpenCV实战的图像处理:色度分割

    重磅干货,第一时间送达 通过HSV色阶使用彩色图像可以分割来分割图像中的对象,但这并不是分割图像的唯一方法.为什么大多数人偏爱色度而不是RGB / HSV分割? 可以获得RGB / HSV通道之间的比 ...

  • 基于运动相关分析的实时多源异构传感器时空标定方法研究

    Real-Time Temporal and Rotational Calibration of Heterogeneous Sensors Using Motion Correlation Anal ...

  • 一种基于生成对抗网络的无人机图像去雾算法

    一种基于生成对抗网络的无人机图像去雾算法 随着人类社会的不断发展与科技的不断进步,人们已经进入了信息时代.无人机作为这个时代信息获取的独特载体,凭借自身优势,在航拍.农业.救灾防灾.野生动物观测.测绘 ...

  • 基于OpenCV的实战:轮廓检测(附代码解析)

    重磅干货,第一时间送达 利用轮廓检测物体可以看到物体的各种颜色,在这种情况下放置在静态和动态物体上.如果是统计图像,则需要将图像加载到程序中,然后使用OpenCV库,以便跟踪对象. 每当在框架中检测到 ...