R数据分析:随机截距交叉滞后RI-CLPM与传统交叉滞后CLPM





给模型一些限制条件后继续验证数据

This can be done by comparing the fit of a (nested) model with constraints to the fit of the more general model using a chi-square difference test (Δχ2)

RI-CLPM实例操练


RICLPM <- ' # 随机截距RIx =~ 1*x1 + 1*x2 + 1*x3 + 1*x4 + 1*x5RIy =~ 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5
# 个体内的变量设定wx1 =~ 1*x1wx2 =~ 1*x2wx3 =~ 1*x3 wx4 =~ 1*x4wx5 =~ 1*x5wy1 =~ 1*y1wy2 =~ 1*y2wy3 =~ 1*y3wy4 =~ 1*y4wy5 =~ 1*y5
# 个体内交叉滞后设定wx2 + wy2 ~ wx1 + wy1wx3 + wy3 ~ wx2 + wy2wx4 + wy4 ~ wx3 + wy3wx5 + wy5 ~ wx4 + wy4
# 个体内共变设定wx1 ~~ wy1 wx2 ~~ wy2wx3 ~~ wy3wx4 ~~ wy4wx5 ~~ wy5
# 随机截距的方差和共变RIx ~~ RIxRIy ~~ RIyRIx ~~ RIy#这个系数是需要报告的
# 个体内变量的方差wx1 ~~ wx1 wy1 ~~ wy1 wx2 ~~ wx2 wy2 ~~ wy2 wx3 ~~ wx3 wy3 ~~ wy3 wx4 ~~ wx4 wy4 ~~ wy4 wx5 ~~ wx5wy5 ~~ wy5'RICLPM.fit <- lavaan(RICLPM, data = dat, missing = 'ML', meanstructure = T, int.ov.free = T)summary(RICLPM.fit, standardized = T)
Moreover, we find a significant positive covariance between the random intercepts, suggesting that individuals who have more sleep problems, in general, are also more anxious in general.


什么时候选随机截距交叉滞后


小结

赞 (0)
