链表
顺序表的构建需要预先知道数据大小来申请连续的存储空间,而在进行空充时又需要进行数据的搬迁,所以使用起来并不是很灵活。链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理链表的定义链表(Linked List)是一种常见的基础数据结构,是一只种类线性表,但是不像顺序表一样连续存储数据,而是在每一个节点(数据存储单元)里存放下一个节点的位置信息(即地址)。
单向链表图示.png单链表单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域。这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值。
单链表的节点和单链表.png表元素域elem用来存放具体的数据。链接域next用来存放下一个节点的位置(python中的标识)变量p指向链表的头节点(首节点)的位置,从p出发能找到表中的任意节点。节点实现class SingleNode(object): """单链表的节点""" def __init__(self,item): #_item存放数据元素 self.item = item #_next是下一个节点的标识 self.next = None单链表的操作is_empty() 链表是否为空length() 链表长度travel() 遍历整个链表add(item) 链表头部添加元素append(item) 链表尾部添加元素insert(pos, item) 指定位置添加元素remove(item) 删除节点search(item) 查找节点是否存在单链表的实现class SingleNode(object): """单链表的节点""" def __init__(self,item): #_item存放数据元素 self.item = item #_next是下一个节点的标识 self.next = Noneclass SingleLinkList(object): """单链表""" def __init__(self): self.__head = None def is_empty(self): """判断链表是否为空""" return self.__head == None def length(self): """链表长度""" #cur 初始时指向头节点 cur = self.__head count = 0 #尾节点指向None,当未到达尾部时候 while cur != None: count += 1 #将cur后移动一个节点 cur = cur.next return count def travel(self): """遍历链表""" cur = self.__head while cur != None: print (cur.item) cur = cur.next头部添加元素
单链表表头插入元素.pngdef add(self,item): """头部添加元素""" #先创建一个保存item值的节点 node = SingleNode(item) #将新节点的链接域next指向头节点,即__head指向的位置 node.next = self.__head #将链表的头__head指向新节点 self.__head = node尾部添加元素def append(self, item): """尾部添加元素""" node = SingleNode(item) # 先判断链表是否为空,若是空链表,则将__head指向新节点 if self.is_empty(): self.__head = node # 若不为空,则找到尾部,将尾节点的next指向新节点 else: cur = self.__head while cur.next != None: cur = cur.next cur.next = node指定位置添加元素
单链表指定位置添加元素.pngdef insert(self, pos, item): """指定位置添加元素""" # 若指定位置pos为第一个元素之前,则执行头部插入 if pos <= 0: self.add(item) # 若指定位置超过链表尾部,则执行尾部插入 elif pos > (self.length()-1): self.append(item) # 找到指定位置 else: node = SingleNode(item) count = 0 # pre用来指向指定位置pos的前一个位置pos-1,初始从头节点开始移动到指定位置 pre = self.__head while count < (pos-1): count += 1 pre = pre.next # 先将新节点node的next指向插入位置的节点 node.next = pre.next # 将插入位置的前一个节点的next指向新节点 pre.next = node删除节点
单链表删除节点.pngdef remove(self,item): """删除节点""" cur = self.__head pre = None while cur != None: # 找到了指定元素 if cur.item == item: # 如果第一个就是删除的节点 if not pre: # 将头指针指向头节点的后一个节点 self.__head = cur.next else: # 将删除位置前一个节点的next指向删除位置的后一个节点 pre.next = cur.next break else: # 继续按链表后移节点 pre = cur cur = cur.next查找节点是否存在def search(self,item): """链表查找节点是否存在,并返回True或者False""" cur = self._head while cur != None: if cur.item == item: return True cur = cur.next return False测试if __name__ == "__main__": ll = SingleLinkList() ll.add(1) ll.add(2) ll.append(3) ll.insert(2, 4) print("length:",ll.length()) ll.travel() print(ll.search(3)) print(ll.search(5)) ll.remove(1) print("length:",ll.length()) ll.travel()链表与顺序表的对比链表失去了顺序表随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大,但对存储空间的使用要相对灵活。链表与顺序表的各种操作复杂度如下所示:操作链表顺序表访问元素O(n)O(1)在头部插入/删除O(1)O(1)在尾部插入/删除O(n)O(1)在中间插入/删除O(n)O(n)注意虽然表面看起来复杂度都是 O(n),但是链表和顺序表在插入和删除时进行的是完全不同的操作。链表的主要耗时操作是遍历查找,删除和插入操作本身的复杂度是O(1)。顺序表查找很快,主要耗时的操作是拷贝覆盖。因为除了目标元素在尾部的特殊情况,顺序表进行插入和删除时需要对操作点之后的所有元素进行前后移位操作,只能通过拷贝和覆盖的方法进行。单向循环链表单链表的一个变形是单向循环链表,链表中最后一个节点的next域不再为None,而是指向链表的头节点。
单向循环链表.png操作is_empty() 判断链表是否为空length() 返回链表的长度travel() 遍历add(item) 在头部添加一个节点append(item) 在尾部添加一个节点insert(pos, item) 在指定位置pos添加节点remove(item) 删除一个节点search(item) 查找节点是否存在实现class Node(object): """节点""" def __init__(self, item): self.item = item self.next = Noneclass SinCycLinkedlist(object): """单向循环链表""" def __init__(self,node = None): self.__head = node if node: node.next = node def is_empty(self): """判断链表是否为空""" return self.__head == None def length(self): """返回链表的长度""" # 如果链表为空,返回长度0 if self.is_empty(): return 0 count = 1 cur = self.__head while cur.next != self.__head: count += 1 cur = cur.next return count def travel(self): """遍历链表""" if self.is_empty(): return cur = self.__head while cur.next != self.__head: cur = cur.next print (cur.item) print (cur.item) def add(self, item): """头部添加节点""" node = Node(item) if self.is_empty(): self.__head = node node.next = self.__head else: #添加的节点指向__head node.next = self.__head # 移到链表尾部,将尾部节点的next指向node cur = self.__head while cur.next != self.__head: cur = cur.next cur.next = node #__head指向添加node的 self.__head = node def append(self, item): """尾部添加节点""" node = Node(item) if self.is_empty(): self.__head = node node.next = self.__head else: # 移到链表尾部 cur = self.__head while cur.next != self._head: cur = cur.next # 将尾节点指向node cur.next = node # 将node指向头节点__head node.next = self.__head def insert(self, pos, item): """在指定位置添加节点""" if pos <= 0: self.add(item) elif pos > (self.length()-1): self.append(item) else: node = Node(item) cur = self.__ head count = 0 # 移动到指定位置的前一个位置 while count < (pos-1): count += 1 cur = cur.next node.next = cur.next cur.next = node def remove(self, item): """删除一个节点""" # 若链表为空,则直接返回 if self.is_empty(): return # 将cur指向头节点 cur = self.__head pre = None # 若头节点的元素就是要查找的元素item if cur.item == item: # 如果链表不止一个节点 if cur.next != self.__head: # 先找到尾节点,将尾节点的next指向第二个节点 while cur.next != self.__head: cur = cur.next # cur指向了尾节点 cur.next = self.__head.next self.__head = self.__head.next else: # 链表只有一个节点 self.__head = None else: pre = self.__head # 第一个节点不是要删除的 while cur.next != self.__head: # 找到了要删除的元素 if cur.item == item: # 删除 pre.next = cur.next return else: pre = cur cur = cur.next # cur 指向尾节点 if cur.item == item: # 尾部删除 pre.next = cur.next def search(self, item): """查找节点是否存在""" if self.is_empty(): return False cur = self.__head if cur.item == item: return True while cur.next != self.__head: cur = cur.next if cur.item == item: return True return Falseif __name__ == "__main__": ll = SinCycLinkedlist() ll.add(1) ll.add(2) ll.append(3) ll.insert(2, 4) ll.insert(4, 5) ll.insert(0, 6) print ("length:",ll.length()) ll.travel() print ll.search(3) print ll.search(7) ll.remove(1) print ("length:",ll.length()) ll.travel()双向链表一种更复杂的链表是“双向链表”或“双面链表”。每个节点有两个链接:一个指向前一个节点,当此节点为第一个节点时,指向空值;而另一个指向下一个节点,当此节点为最后一个节点时,指向空值。
双向链表.png操作is_empty() 链表是否为空length() 链表长度travel() 遍历链表add(item) 链表头部添加append(item) 链表尾部添加insert(pos, item) 指定位置添加remove(item) 删除节点search(item) 查找节点是否存在实现class Node(object): """双向链表节点""" def __init__(self, item): self.item = item self.next = None self.prev = Noneclass DLinkList(object): """双向链表""" def __init__(self): self._head = None def is_empty(self): """判断链表是否为空""" return self._head == None def length(self): """返回链表的长度""" cur = self._head count = 0 while cur != None: count += 1 cur = cur.next return count def travel(self): """遍历链表""" cur = self._head while cur != None: print cur.item, cur = cur.next print "" def add(self, item): """头部插入元素""" node = Node(item) if self.is_empty(): # 如果是空链表,将_head指向node self._head = node else: # 将node的next指向_head的头节点 node.next = self._head # 将_head的头节点的prev指向node self._head.prev = node # 将_head 指向node self._head = node def append(self, item): """尾部插入元素""" node = Node(item) if self.is_empty(): # 如果是空链表,将_head指向node self._head = node else: # 移动到链表尾部 cur = self._head while cur.next != None: cur = cur.next # 将尾节点cur的next指向node cur.next = node # 将node的prev指向cur node.prev = cur def search(self, item): """查找元素是否存在""" cur = self._head while cur != None: if cur.item == item: return True cur = cur.next return False指定位置插入节点双向链表指定位置插入元素.pngdef insert(self, pos, item): """在指定位置添加节点""" if pos <= 0: self.add(item) elif pos > (self.length()-1): self.append(item) else: node = Node(item) cur = self._head count = 0 # 移动到指定位置的前一个位置 while count < (pos-1): count += 1 cur = cur.next # 将node的prev指向cur node.prev = cur # 将node的next指向cur的下一个节点 node.next = cur.next # 将cur的下一个节点的prev指向node cur.next.prev = node # 将cur的next指向node cur.next = node删除元素
双向链表删除节点.pngdef remove(self, item): """删除元素""" if self.is_empty(): return else: cur = self._head if cur.item == item: # 如果首节点的元素即是要删除的元素 if cur.next == None: # 如果链表只有这一个节点 self._head = None else: # 将第二个节点的prev设置为None cur.next.prev = None # 将_head指向第二个节点 self._head = cur.next return while cur != None: if cur.item == item: # 将cur的前一个节点的next指向cur的后一个节点 cur.prev.next = cur.next # 将cur的后一个节点的prev指向cur的前一个节点 cur.next.prev = cur.prev break cur = cur.next测试if __name__ == "__main__": ll = DLinkList() ll.add(1) ll.add(2) ll.append(3) ll.insert(2, 4) ll.insert(4, 5) ll.insert(0, 6) print "length:",ll.length() ll.travel() print ll.search(3) print ll.search(4) ll.remove(1) print "length:",ll.length() ll.travel()