冯·诺伊曼:无与伦比的天才(下)
在《冯·诺伊曼:无与伦比的天才(上)》中,我们介绍了冯·诺伊曼的早期时代:作为神童降临地球;进入大学后以及在哥廷根时期,他对集合论、博弈论、量子力学和算子理论的相关成就。在下篇里,我们继续他的天才故事。众所周知,因为纳粹政权上台,一大批顶级学者移民美国,冯·诺伊曼就是其中之一。在这里他继续发挥了自己的超常天赋,特别是在数学方面,仅在遍历理论方面的研究就“足以保证他在数学上的不朽”;而他还在曼哈顿计划、计算机科学等工作中贡献了彪炳史册的成果。最后,我们还能看到一个生活中的冯·诺伊曼,这位“火星人”的地球人一面。
编译 | 哪吒
在美国
1929年10月,约翰·冯·诺伊曼受邀到普林斯顿大学讲授量子理论,这是他第一次来到美国,当时还是汉堡大学的一名编外讲师。1930年至1933年他在普林斯顿大学任客座教授。任期结束的同一年,希特勒首次在德国掌权,导致冯·诺伊曼完全放弃了他在欧洲的学术职位,并对纳粹政权声明,
“如果这些男孩再这样干两年,他们会至少毁掉一代人的德国科学。”
当然,许多事实证明冯·诺伊曼的预测是正确的。第二年,当纳粹教育部长问道:“既然摆脱了犹太人的影响,哥廷根的数学进展如何?”据说希尔伯特回答道:
“哥廷根已经没有数学了。”
在普林斯顿大学(1930-1933)
20世纪30年代中期,冯·诺伊曼(以及众多其他一流的数学家和物理学家)在新泽西州普林斯顿的处境如今已是众所周知。
根据维格纳所说(Macrae, 1992),在普林斯顿大学的推荐下,冯·诺伊曼和同为路德教会高中的同学尤金·维格纳一起被普林斯顿大学教授奥斯瓦尔德·维布伦(Oswald Veblen)招募:
“……不要仅仅邀请一个人,而是至少两个,他们两人已经彼此认识,不会突然觉得自己被放在了一个没有私人往来的孤岛上。约翰尼的名字在那时已经闻名世界,所以他们决定邀请约翰尼·冯·诺伊曼。他们看了看谁和冯·诺伊曼一起写文章?他们找到了维格纳先生。所以也给我发了一封电报。”
1930年冯·诺伊曼作为客座教授第一次来到普林斯顿。关于他在那里的工作,冯·诺伊曼自己在后来的生活中特别强调了遍历理论(Ergodic theory)。
遍历理论
遍历理论是研究确定性动力系统的统计性质的数学分支。形式上,它研究的是具有不变测度的动力系统的状态。通俗地说,想想太阳系中的行星是如何根据牛顿力学运动的:行星在运动,但支配行星运动的规则保持不变。在1932年发表的两篇论文中,冯·诺伊曼对这类系统的理论做出了基础性的贡献,其中包括冯·诺伊曼平均遍历定理(Von Neumann's mean ergodic theorem),该定理被认为是液体和气体统计力学的第一个严格的数学基础。这两篇论文的标题分别是“Proof of the Quasi-ergodic Hypothesis(《准遍历假设的证明》)”和“Physical Applications of the Ergodic Hypothesis(《遍历假设的物理应用》)”。
.
换句话说,作为测度理论的一个子领域,遍历理论关注的是允许长时间运行的动力系统的行为。冯·诺伊曼遍历定理是该领域两个最重要的定理之一,另一个定理由伯克霍夫(George David Birkhoff )提出。根据哈尔莫斯(1958)的说法:
“从(冯·诺伊曼的)论文中获得的深刻见解是,整个问题本质上是群论的,特别是,测量问题的可解性与群可解性的普通代数概念是相关的。因此,冯·诺伊曼认为,是群的变化而不是空间的变化造成了差异; 用其他完全合理的群代替刚性运动的群,可以产生R2中不可解的问题和R3中可解的问题。”
“如果冯·诺伊曼从未做过其他事情,这些东西就足以保证他在数学上的不朽。”
——保罗·哈尔莫斯(1958)
在高等研究院
1930-33年,冯·诺伊曼在普林斯顿大学做了三年的客座教授,然后他获得了高等研究院 (IAS) 终身教授的职位。他当时30岁。在此之前,该研究院曾计划将职位授予外尔,但未能如愿(Macrae, 1992)。仅仅成立了三年,冯·诺伊曼就成为了IAS的前六位教授之一,其他五位分别是詹姆斯·亚历山大(J. W. Alexander)、爱因斯坦、马斯顿·莫尔斯(Marston Morse)、奥斯瓦尔德·维布伦以及外尔。
新泽西州普林斯顿高等研究院
图片来源:Cliff Compton
当他1933年加入时,该研究所仍然位于普林斯顿大学Fine Hall的数学系。高等研究院由亚伯拉罕·弗莱克斯纳(Abraham Flexner)于1930年创立,由路易斯·班贝格(Louis Bamberger)和卡洛琳·班贝格·富尔德(Caroline Bamberger Fuld)的慈善资金资助,无论是过去还是现在都是一所与众不同的大学。受弗莱克斯纳在海德堡大学、万灵学院、牛津大学和法兰西公学院(Collège de France)的经历的启发,IAS被传记作家西尔维娅·纳萨尔(Sylvia Nasar)描述为:
“一个一流的研究机构,没有老师,没有学生,没有课堂,只有研究人员,免受外部世界的变迁和压力。”
1939年,高等研究院搬到了自己的校园——“福德楼(Fuld Hall)”。在20世纪30年代初的几年时间里,高等研究院成功继承了哥廷根大学作为数学宇宙最重要的中心的宝座。这一戏剧性而迅速的变化被称为1933年的“大清洗”,许多顶级学者因为担心自身安全而逃离欧洲。其中,除了冯·诺伊曼和维格纳,当然还有爱因斯坦(1933)、玻恩(1933),冯·诺伊曼的布达佩斯同胞西拉德(1938)和爱德华·泰勒(1933),以及埃德蒙·兰道(Edmund Landau,1927)、詹姆斯·弗兰克(James Franck,1933)和理查德·柯朗(1933)等人。
几何
在高等研究院期间,冯·诺伊曼创立了连续几何学领域,这是复射影几何学的类比,其中子空间的维度不是离散集0,1,…,n,它可以是单位区间[0,1]的任意一个元素。
- L是不可约的,即只有0和1两个元素有唯一的“补”
就像他的遍历理论一样,冯·诺伊曼发表了两篇关于连续几何的论文,一篇证明了它的存在并讨论了它的性质,另一篇给出了例子:
von Neumann (1936). Continuous geometry. Proceedings of the National Academy of Sciences 22 (2) pp. 92–100. (《连续几何学》) von Neumann (1936). Examples of continuous geometries. Proceedings of the National Academy of Sciences 22 (2) pp. 101–108.(《连续几何学实例》)
冯·诺伊曼在洛斯阿拉莫斯(Los Alamos)时的证件照片
冯·诺伊曼与费曼、乌拉姆在洛斯阿拉莫斯(Los Alamos)交谈。
1957年冯·诺伊曼在美国哲学学会的演讲
图片来源:Alfred Eisenstaedt摄
“在这里待了一个月后,我和冯·诺伊曼谈论了各种归纳过程和进化过程,他说:“当然,这就是图灵所说的。”我问:“图灵是谁?”他说,“去查一下1937年的《伦敦数学学会学报》。”
事实上,有一个通用机器来模仿所有其他机器……只有冯·诺伊曼和少数人理解。当他明白了这一点,他就知道我们能做什么了。”——比奇洛(Julian Bigelow)
——摘自George Dyson,Turing's Cathedral(《图灵的大教堂》,2012)
包含算术逻辑单元和处理器寄存器的处理单元; 包含一个指令寄存器和一个程序计数器的控制单元; 可存储数据和指令的存储单元; 外部存储器; 输入和输出机制;
冯·诺伊曼和IAS机器,此机器有时被称为“冯·诺伊曼机器”,从1942年到1951年被放在“富德楼”的地下室(拍摄:Alan Richards)
“冯·诺伊曼坚定地向我表示,我相信他也向其他人强调过,这个基本概念是图灵的功劳——巴贝奇(Babbage)、洛夫莱斯(Lovelace)和其他人都没有预料到这一点。”
—— Stanley Fraenkel(1972)
“我们想要系统招标的唯一部分是你刮胡子时的想法:我们希望你把投入到事物中的任何想法都传递给我们。”
——摘自兰德公司负责人给冯·诺伊曼的信(Poundstone,1992)
私人生活
“派对和夜生活对冯·诺伊曼有着特殊的吸引力。冯·诺伊曼在德国教书时,曾是卡巴莱时代柏林夜生活圈的常客。”——Vonnauman(1987)
冯·诺伊曼家里经常举行聚会,很有名,时间也很长。——哈尔莫斯(1958)
冯·诺伊曼和他的妻子克拉拉·丹(Klára Dán)与宠物丨图片来源:Alan Richards
冯·诺伊曼1938年在佛罗里达州大沼泽地
图片来源:Marina von Neumann Whitma
3)对新理论的组合方面的上层结构有一种直观的感觉。”
两个自行车骑手开始相距20英里,南北相向而行,保持每小时10英里的行驶速度。与此同时,一只苍蝇以每小时15英里的速度从南边自行车的前轮出发,飞向北边;遇到北边自行车的前轮,然后转身再飞往南边自行车的前轮,继续这样下去,直到它被两个前轮压扁。问:苍蝇飞行的总距离是多少?
有两种方法来回答这个问题。一种方法是计算苍蝇在两辆自行车之间每一段行程所覆盖的距离,最后将它们相加得到无穷级数。更简便的方法是观察到自行车在出发一小时后会合,这样苍蝇只有一个小时的旅行时间;因此答案肯定是15英里。当这个问题被提交给冯·诺伊曼时,他立刻就解决了,因此让提问者很失望:“哦,你以前一定听说过这个诀窍!”
“什么把戏?”冯·诺伊曼问,“我所做的只是对无穷级数求和。”
——摘自Nasar,A Beautiful Mind(《美丽心灵》,1998)
参加冯·诺伊曼关于算子理论的讲座,做笔记,完成未完成的证明,并将其分发到美国所有大学的图书馆; 协助冯·诺伊曼作为《数学年鉴》(Annals of Mathematics)编辑的工作,阅读每一份接受出版的手稿;在希腊字母下面划红线,在德国字母下面划绿线,圈出斜体,在页边空白处写下给印刷厂的笔记;每周去印刷厂一次,指导他们排版; 将冯·诺伊曼大量长达100页的论文翻译成英文;
“他流畅的思路让那些缺乏天赋的人难以理解。他会在黑板上空出的一小部分上匆匆写出方程式,在学生还没来得及抄下的时候就把公式擦掉了,这一点让他臭名远扬。”
——摘自N.A. Vonneuman,John von Neumann: As Seen by his Brother(《兄弟眼中的冯·诺伊曼》, 1987)
晚年
1956年,艾森豪威尔总统(左)授予约翰·冯·诺伊曼总统自由勋章
1956年3月20日哥德尔写给冯·诺伊曼的信:
尊敬的冯·诺伊曼先生:
听说您病了,我非常悲痛。这消息来得很意外。摩根斯特恩去年夏天已经告诉我,您曾经有过一种软弱无力的表现,但当时他认为这并没有什么大不了的。据我所知,在过去的几个月里,您接受了彻底的治疗,我很高兴这种治疗如预期的那样成功,而且您现在正在好转。我希望并祝愿您的病情能尽快好转,如果可能的话,最新的医学发现将会使您完全康复。
……
我很高兴能听到您的个人消息。如果有什么需要我帮忙的,请告诉我。谨向您及您的夫人致以最美好的问候和祝福。
您真挚的
库尔特·哥德尔
P.S. 我衷心祝贺美国政府授予您的荣誉
本文译自Jørgen Veisdal,The Unparalleled Genius of John von Neumann
https://www.cantorsparadise.com/the-unparalleled-genius-of-john-von-neumann-791bb9f42a2d